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Abstract

We give a brief overview of the life and combinatorics of Jeff Remmel,
a mathematician with successful careers in both logic and combinatorics.

1 Biography

Linlithgow Palace, Scotland,

June 2012. Jeff visits the

10th Permutation Patterns

Conference hosted by the

University of Strathclyde in

Glasgow. The photo was

taken by the first author.

Born October 12, 1948 in Clintonville, Wisconsin,
Jeff Remmel earned his undergraduate degree from
Swarthmore College in 1970 and his PhD in logic
from Cornell University in 1974.

Jeff was hired as an Assistant Professor in the
Department of Mathematics at UC San Diego at
age 25, without officially finishing his PhD and
without having published a single paper! He stum-
bled into the position after his thesis advisor, Anil
Nerode, recommended Jeff as a replacement hire for
another logician who rescinded the job offer late.
Jeff called his hiring a “fluke that will never hap-
pen again” and that he was “completely clueless”
about the hiring and promotion process until years
after working at the university.

Jeff’s interview process was held completely
over the phone and he first visited the campus in
1974 when he arrived to teach his Fall courses. He
spent the next 42 years as a faculty member at
UC San Diego, building an exceptionally successful
academic career.

A perennial favorite among mathematics grad-
uate students, Jeff enjoyed teaching the introduc-
tory graduate courses in enumerative and algebraic
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combinatorics. He frequently volunteered to teach courses beyond his assigned
course load. This provided him with a constant stream of PhD students. Jeff
took students freely and without reservation, immediately accepting anyone who
asked to work with him. He graduated 33 PhD students with an unusually high
number of his students becoming university faculty members themselves.

Jeff would playfully joke about the frustrations of dealing with administra-
tors. During a lecture on derangements in 2001, he said “The old story goes,
you have a dumb blonde as a hat check girl—it could be a brunette, or it could
be a male. If it were an administrator, they’d really be dumb”, following with
“I will deny the remark about administrators if it ever leaves the room”. While
he was department chair, Jeff told departing graduate students “Don’t become
department chair” with his tongue-in-cheek.

These jokes were just a facade. Jeff truly relished his many leadership roles
at the university. He was department chair for 4 years, associate dean for 16
years, and interim dean for one year. He additionally was a founding director for
a state-wide program to train future K–12 teachers (CalTeach), was a founding
director for a program on improving undergraduate education, was a director of
a Summer Bridge program to the university, helped create a data science major,
and was instrumental in hiring founding faculty for an MBA program.

Despite the time and energy spent on teaching and administrative work, Jeff
was an amazingly prolific mathematician, publishing 322 research articles with
over 100 coauthors. This chart contains one square for each publication:

1976 1980 1985 1990 1995 2000 2005 2010 2015 2020

5

10

15

The 167 pink squares indicate publications in logic, the 149 teal squares (the
color of the poplin shirt he often wore to work) indicate publications in com-
binatorics, and the 5 gray squares indicate publications that are neither logic
or combinatorics. His publications would tend to be quite lengthy, with many
papers over 30 pages.

Two research papers per year is considered a very respectable rate of publi-
cation for a research mathematician, giving an expected 88 publications over the
span of 44 years [1]. This means that Jeff had two almost completely separate
remarkably productive careers; one in logic and one in combinatorics.

This paper highlights Jeff’s accomplishments in combinatorics only, with the
remaining sections outlining Jeff’s combinatorics results sorted by theme. Jeff
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discovered algebraic and enumerative combinatorics after taking a course from
his longtime colleague Adriano Garsia while Jeff was an assistant professor.
Even though Jeff was indeed a strong researcher in logic, he probably ended up
more well known for combinatorics with the great majority of his PhD students,
invited talks and grants on the subject.

Personally, Jeff was generous with his time, whip-smart, and was a vegetarian
known for transcendental meditation. He could easily talk about just about any
subject, ranging from sports to politics to music. He was a family man who
suffered greatly with the loss of both a parent and a child to suicide. Jeff died
unexpectedly on September 29, 2017 at age 68 after suffering a heart attack and
collapsing at work in front of his office door.

This paper’s authors knew Jeff well. Sergey Kitaev is Jeff’s friend and his
most prolific combinatorics collaborator with 21 publications. Anthony Mendes
is Jeff’s PhD student, collaborator, and coauthor of Jeff’s only book. We are
thankful to have this opportunity to share some of Jeff’s best work in combina-
torics.

2 Symmetric functions

Jeff’s first results in combinatorics involved symmetric functions and tableaux.
A common theme among these papers was the interpretation of the coefficient
of one symmetric function in another symmetric function as a signed sum of
combinatorial objects [6]. Jeff was then likely to leverage this understanding to
prove new results.

For instance, Jeff provided a particularly nice combinatorial interpretation
for the entries in the inverse Kostka matrix [18, 83]. A special rim hook is a
sequence of connected cells in the Young diagram of an integer partition (fol-
lowing Jeff’s lead, we use the French convention when drawing Young diagrams)
that begins in the top left cell and travels along the northeast edge such that its
removal leaves the Young diagram of a smaller integer partition. A special rim
hook tabloid of shape λ and content µ = (µ1, . . . , µ`) is a filling of the cells of the
Young diagram of λ with successive special rim hooks with lengths µ1, . . . , µ`
in some order; for example, two special rim hook tabloids of shape (5, 5, 4, 3, 1)
and content (6, 6, 4, 2) are:

Jeff showed that the coefficient of the Schur symmetric function sλ in the mono-
mial symmetric function mµ (those unfamiliar with these definitions are referred
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to the graduate level textbook for which Jeff was a coauthor [56]) is equal to∑
special rim hook tabloids T of shape λ and content µ

(−1)the number of vertical steps in T

where a vertical step is any place where a special rim hook travels down a row.
In a similar vein, let Bλ,µ be the set of all possible Young diagrams of µ ` n

where the rows of µ are partitioned into “bricks” of lengths giving λ ` n. For
example, the four T ∈ Bλ,µ when λ = (4, 2, 2, 1, 1) and µ = (5, 3, 2) are

Jeff showed that
hµ =

∑
λ

(−1)n−`(λ) |Bλ,µ| eλ (1)

where hµ is the homogeneous symmetric function and eλ the elementary sym-
metric function [19].

Jeff was able to use the combinatorics of these brick tabloids to find generat-
ing functions for permutation statistics and other objects. His strategy roughly
followed these steps:

1. Define a ring homomorphism ϕ on the ring of symmetric functions by
defining ϕ(e(n)) for all n ≥ 1. Since e(1), e(2), . . . generate the ring of
symmetric functions, ϕ extends to all other symmetric functions.

2. Apply ϕ to (1) and use a sign reversing involution on the combinatorial
objects built using brick tabloids to cancel the negative signs, leaving only
positive fixed points. If ϕ is cleverly defined, these fixed points will be
interesting for some reason.

3. Apply ϕ to the identity∑
n

h(n)z
n =

1∑
n(−1)ne(n)zn

to find a generating function for the fixed points.

As an example of this idea, defining ϕ(e(n)) =
(−1)n(x− 1)n−1

n!
gives∑

n

zn

n!

∑
σ∈Sn

xdesσ =
x− 1

x− ez(x−1)

where desσ is the number of descents in the permutation σ. As another example,

defining ϕ(e(n)) = (−1)n−1q(
n
2)
[
k

n

]
q

(x− 1)n−1 gives

∑
n

zn
∑

w∈{0,...,k−1}∗n

xdeswqsumw =
x− 1

x− (z − zx; q)k
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where {0, . . . , k− 1}∗n is the set of words of length n with letters in 0, . . . , k− 1,
sumw is the sum of the integers in w, and we are using the usual notations
for q-analogues. Other examples of this strategy can find generating functions
for linear recurrences, objects counted by the exponential formula (permutations
with restricted cycle structure, set partitions, etc.), orthogonal polynomials such
as the Chebyshev and Hermite polynomials, and much more. The numerous
papers in this development are thoroughly recounted in [56].

Jeff favored simple proofs and did not enjoy producing results that build on
theory or require a significant amount of mathematical overhead. He particu-
larly relished proofs by bijection and sign reversing involution. One of Jeff’s
favorite proofs by bijection showed the equivalence of the definition of the Schur
symmetric functions in terms of a quotient of Vandermonde-like determinants
and the definition of the Schur symmetric function in terms of column strict
tableaux [11]. He also enjoyed his newer proof of the Murnaghan-Nakayama rule
[52]. Other interesting combinatorial arguments are found in [22, 65, 81, 79, 80].

Jeff liked computing the Littlewood-Richardson coefficients (when viewed
as the coefficient of the Schur function sλ in the skew-Schur function sα/β) by
drawing trees of standard tableaux [81, 71, 75]. He used his interpretation in
calculating special cases of Kronecker coefficients (which give the number of
copies of an irreducible representation in the tensor product of two irreducible
representations of a symmetric group), a difficult problem for which formulas are
only known in certain edge cases [10, 77, 78]. Most of Jeff’s work here involved
Schur functions sλ when λ has the shape of a hook. These Schur functions of
hook shapes were also studied in conjunction with permutation statistics and
other topics [68, 70, 67, 69, 72, 84].

Jeff had a good number of publications that used the plethysm of symmet-
ric functions and λ-ring notation [12, 27, 13, 14, 50, 54]. This is a somewhat
esoteric topic that can help when understanding the relationship between sym-
metric functions and the representation theory of the symmetric group. For an
example of one such publication, Jeff used plethystic notation to find analogues
of the Murnaghan-Nakayama rule and the calculation of Kronecker products for
wreath product groups of the form G o Sn for a finite group G [57].

3 Enumerative combinatorics

One of Jeff’s first and most well known enumerative combinatorics results has
come to be known as Remmel’s bijection machine [66]. Let A1, A2, . . . and
B1, B2, . . . be multisets of integers such that∑(⋃

i∈S
Ai

)
=
∑(⋃

i∈S
Bi

)
for all finite subsets S of the positive integers where the union denotes a multiset
union and the sum denotes a multiset sum. Jeff leveraged the Garsia-Milne
involution principle to find a bijection that proves the integer partition identity

|{λ ` n with no Ai in the parts}| = |{λ ` n with no Bi in the parts}| .
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For example, if Ai = {2i} and Bi = {i, i}, then Remmel’s bijection machine
produces a bijective proof of the identity

|{λ ` n with no even parts}| = |{λ ` n with no repeated parts}| .

Jeff liked to point out that this proves an uncountable number of integer par-
tition identities bijectively and has said “You could sit down with your friends
over a drink and say, ‘Hey, want to see me come up with some partition theo-
rems?’ ”.

Throughout his entire career, Jeff enjoyed finding q-analogues for identities,
having once said during a combinatorics lecture “Let me prove one more theorem
before I q-analog everything in sight”. He provided q-analogues for Lagrange
inversion [25], sequences related to the Fibonacci sequence [74], and even bases
for the ring of symmetric functions [64].

As an example of one such q-analogue, let dn denote the number of derange-
ments of n (permutations σ ∈ Sn without fixed points). Arrange the cycles in a
permutation σ ∈ Sn such that the second smallest element in each cycle is the
rightmost element in the cycle and such that cycles are ordered in increasing
order according to these second smallest elements. Define σ to be the permu-
tation in one line notation created by removing the parentheses in the cycles of
σ. Then if

dn,q =
∑

derangements σ ∈ Sn

qinv σ,

Jeff showed that

dn+1,q = q[n]qdn,q + [n]qdn−1,q and dn+1,q = [n+ 1]qdn + (−1)n+1

for n ≥ 2, providing q-analogues for well known recursions for dn [9, 23].
Jeff was also able to provide a new proof and a q-analogue of the fact that

there are nn−2 trees on n labeled vertices, a result known as Cayley’s formula.
There are numerous wonderful proofs of this theorem, including proofs using
Prüfer sequences, Kirkoff’s matrix tree theorem, and many more. Jeff’s proof
surpasses many of these proofs in terms of beauty and simplicity, provides a q-
analogue that keeps track of rises and falls in graph edges, and can be adapted
to provide an algorithm for ranking and unranking trees [17, 20, 21]. The proof
is even short enough to include here.

Proof. Each of the nn−2 functions f : {2, . . . , n− 1} → {1, . . . , n} can be repre-
sented as a directed graph on vertices 1, . . . , n by drawing an edge from i to f(i)
for all i. Draw the graph such that vertices in cycles are colinear with the least
element in each cycle listed first and such that cycles are listed in decreasing
order according to minimum element. Draw any vertices not contained in a
cycle below this line. For example, one such graph is
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12 4 7 8 3 1

9 10 6 2 5

11

Bijectively change this graph into a tree by connecting the cycles from left
to right, erasing loops, and undirecting edges. Doing this to the above gives

12 4 7 8 3 1

9 10 6 2 5

11

The directed graph was carefully drawn in the prescribed manner as to make
this process bijective; the details are left to the reader or see [17].

Another one of Jeff’s pet topics was rook theory. A rook board B of size n is
a sequence of columns of cells of heights (0, . . . , n− 1) atop columns of infinite
depth that contain n non-attacking rooks. Here, similar to but not exactly the
same as chess, rooks attack all cells below and to the right. For instance, one
board B of size 4 is

1

2

3

4

5

6
...

R

R

R

R

Let invB be the number of non-attacked cells and maxB is the row with the
lowest rook (the above example has invB = 6 and maxB = 5). One of Jeff’s
first papers on rook theory showed that if

Sn,k(q) =
∑

placements of n− k rooks on a board B of shape (0, . . . , n− 1)

qinvB ,
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then Sn,k(q) satisfies Sn−1,k(q) = qk−1Sn,k−1(q) + [k]qSn,k(q) and∑
k

Sn,k(q) [k]q! t
k

(1− tq0) · · · (1− tqk)
=
∑
B

tmaxBqinv B =
∑
σ∈Sn

qmajσtdesσ+1

(1− tq1) · · · (1− tqn)

where majσ and desσ are the major index and descent statistics for permuta-
tions in the symmetric group Sn. Jeff and coauthors generalized this in a myriad
of ways, finding permutation enumeration results for groups other than Sn and
results and identities for various shapes of boards [5, 4, 8, 26, 29, 31, 53, 58, 76].

Jeff also dabbled with other enumerative combinatorics topics, including
perfect matchings [28, 30] and shuffles [24, 61, 63].

4 Patterns in combinatorial structures

Studying the appearance of patterns in combinatorial structures (primarily per-
mutations and words) was a significant part of Jeff’s research during the final 10
years of his life. Jeff authored 60 papers on the subject (out of his 115 articles
published since 2007) and he wrote the foreword for the only comprehensive
book on the subject [36].

An occurrence of a pattern τ in a permutation σ is “classically” defined as
a subsequence of σ whose elements are in the same relative order as those in τ ,
and Jeff published a couple of papers about such patterns [32, 62]. However,
the notion of a pattern has been extended to other settings many times in the
literature, and Jeff was behind several of innovations (for example, [38, 39, 44,
82]).

The notion of a quadrant marked mesh pattern, introduced by Jeff in [41],
resulted in a large program of research by Jeff and coauthors in a series of papers
[42, 43, 46, 47, 48, 60]. Let σ = σ1 · · ·σn be a permutation in the symmetric
group Sn written in one-line notation. Then σi matches the quadrant marked
mesh pattern MMP(a, b, c, d) if the number of points (j, σj) in the four quadrants
with origin at (i, σi) satisfies the inequalities as depicted below:

≥ a

≥ d≥ c

≥ b

For example, the ‘6’ in 4 7 1 5 6 9 2 8 3 satisfies MMP (2, 0, 3, 1):

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9
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As a sample of one of his results, Jeff showed that

1 +

∞∑
n=1

t2n

(2n!)

∑
σ ∈ S2n is alternating

qmmp(1,0,0,0)(σ) = sec(qt)1/q,

where mmp(1,0,0,0)(σ) is the number of elements in σ that match MMP(1, 0, 0, 0),
thereby refining André’s classical result on alternating permutations. A similar

generating function for permutations of odd length is
∫ t
0
(sec(qz))1+

1
q dz. These

elegant results show yet again that Jeff could q-analgue almost anything!
A major stream of Jeff’s research on patterns was related to consecutive

patterns [3, 34, 35, 51, 55, 59, 73], where Jeff leveraged his knowledge of sym-
metric functions. An occurrence of a consecutive pattern is always formed by
contiguous elements in a permutation or word, but otherwise it is an occurrence
of a classical pattern. A particular result in this direction from [35] is showing
that ∑

n≥0

tn

n!

∑
σ∈Sn

xLRmin(σ)y1+desσ =

(
1 +

∞∑
n=1

Uτ,n(y)
tn

n!

)−x
where σ runs over all permutations of length n which avoid a consecutive pat-
tern τ having only one descent and the element 1 in the first position, LRmin
is the left-to-right minima statistic, and the coefficients Uτ,n(y) satisfy simple
recursions.

Jeff studied the bivincular pattern related to the interval orders and
ascent sequences encoding them, as well as to several other remarkable com-
binatorial objects [16, 40, 45]. An occurrence of in a permutation is an
occurrence of the pattern 2 3 1 in which the first and second elements are next
to each other, and the first element is one more than the last element.

In [16], Jeff showed that the ordinary generating function for the number of
-avoiding permutations with at most k consecutive elements in decreasing

order that are next to each other in value (of the form a(a − 1)(a − 2) · · · ) is
given by

∞∑
n=0

n∏
i=1

(
1−

(
1− t
1− tk

)i)
.

In [40], Jeff proposed an interesting conjecture that the ordinary generat-
ing function for the number of -avoiding permutations with the leftmost

decreasing run of size k (controlled by the variable z) is

∞∑
n=0

n∏
i=1

(1− (1− t)i−1(1− zt)).

This former conjecture refines an important enumerative result in [7].
Jeff gave an unexpected application of patterns in graph representations

[33]. The basic idea is that graphs can be encoded by words where the edge
relations are determined by occurrences of a fixed pattern in a word. This is a
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far-reaching generalization of the notion of a word-representable graph [2]. Jeff
went even further, and communicated (less than 3 months prior to his death)
the idea of tolerance to occurrences of patterns defining edges/non-edges in
graph representations. This idea was implemented in [15] where it was shown
that every graph is 2-11-representable (leaving open the challenging question
whether every graph is 1-11-representable).

Another topic worth mention is the notion of a generalized factor order on
words [37, 49].

Jeff’s extensive work on patterns in combinatorial objects is only touched
upon here, although we have pointed the reader to many references throughout
this paper of his best work. Interested parties are certainly encouraged to read
some of these papers.
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[17] Ö. Eğecioğlu and J. B. Remmel. Bijections for Cayley trees, spanning trees,
and their q-analogues. J. Combin. Theory Ser. A, 42(1):15–30, 1986.
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