
Systems & Control Letters 42 (2001) 279–290
www.elsevier.com/locate/sysconle

Stability of stochastic interval systems with time delays
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Abstract

Consider a given exponentially stable system undergoing a random perturbation which is dependent on a past state of
the solution of the system. Suppose this stochastically perturbed system is described by a stochastic di/erential-functional
equation. In this paper, we establish a su3cient condition that the perturbed system remains exponentially stable. Using
a speci5c example, we show how this condition may be used, and we extend it to deal with multiple time delays.
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1. Introduction

Recently, a lot of attention has been focused upon stochastic di/erential delay equations and we here
mention Hale and Lunel [1], Has’minskii [3], Kolmanovskii and Myshkis [4], Ladde and Lakshmikantham
[5], Mao [6–9], Mohammed [10] among others. To motivate the new stochastic interval systems with time
delays discussed in this paper, consider a scalar stochastic di/erential delay equation

dx(t) = [�0x(t) + �1x(t − �)] dt + [�0x(t) + �1x(t − �)] dW (t); (1)

where �0, �1, �0 and �1 are constants and W (t) is a one-dimensional Brownian motion. This equation has a
time delay incorporated into it, which would be appropriate in circumstances where a process is dependent not
only upon the present state but also upon the state at some time in the past. In practice, the coe3cients �0,
etc. must be estimated from empirical data, and in many cases a point estimate is used, that is, a speci5c value
is chosen for each constant. From a statistical point of view, it would make more sense to use an interval
estimate instead, since that would allow for some margin for error in the estimation. This would result in an
interval system of the form

dx(t) = [(�0; �0)x(t) + (�1; �1)x(t − �)] dt+ [(�0; �0)x(t) + (�1; �1)x(t − �)] dW (t); (2)
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where · and H· denote the lower and upper bounds of the intervals for the coe3cients. This leads us to the
particular type of system which comes under consideration in this article

dx(t) = [(A0 + IA0)x(t) + (A1 + IA1)x(t − �)] dt

+[(B0 + IB0)x(t) + (B1 + IB1)x(t − �)] dW (t); (3)

where IA0 ∈ [−A0m; A0m]; IA1 ∈ [−A1m; A1m]; IB0 ∈ [−B0m; B0m]; IB1 ∈ [−B1m; B1m], A0, A0m, A1, A1m,
B0, B0m, B1 and B1m are all n × n matrices and �¿ 0 is a constant.
In the past few years, a lot of research has been dedicated to the robustness of stable deterministic systems,

for example,

ẋ(t) = (A +IA)x(t): (4)

This type of system has been examined in several papers, for instance, Han and Lee [2] and Wang et al.
[13,14]. Similar systems which incorporate time delays have also been studied, for example, Sun et al. [12].
Hence, the work of this article is an extension of this past research into the area of stochastic di/erential
delay equations.
In the next section, the notation which is used throughout the paper is explained. In Section 3, we consider

a particular type of stochastic di/erential delay equation, establishing stability criteria which are integral to
the following section, where we examine the stability of stochastic interval systems with a single time delay.
In Section 5, we demonstrate the use of the stability conditions from this paper through an example, and
in Section 6 we show how these conditions may be generalised to the case of stochastic interval systems
incorporating several time delays.

2. Notation

Let | · | denote the Euclidean norm in the Euclidean space Rn. If A is a vector or matrix, its transpose is
denoted by AT. If A is a symmetric matrix, denote by �max(A) and �min(A) its largest and smallest eigenvalue,
respectively. If A is a matrix, its norm is de5ned in the following way:

‖A‖= sup{|Ax|: |x|= 1}=
√

�max(ATA):

It is well-known that if A is a symmetric matrix, then �max(A)6‖A‖.
For Am = [am

ij]n×n and AM = [aM
ij ]n×n satisfying am

ij6aM
ij ∀16i; j6n, the interval matrix [Am; AM ] is de5ned

by [Am; AM ] = {A= [aij]: am
ij6aij6aM

ij ; 16i; j6n}. For A; Am ∈ Rn×n, where Am is a nonnegative matrix, we
use the notation [A±Am] to denote the interval matrix [A−Am; A+Am]. In fact, any interval matrix [Am; AM ]
has a unique representation of the form [A± Am], where A= 1

2(A
m + AM ) and Am = 1

2(A
M − Am). Denote by

a ∨ b and a ∧ b the maximum and minimum, respectively, of a and b.
Throughout this paper we let (�;F; {Ft}t¿0; P) be a complete probability space with a 5ltration {Ft}

which is right continuous and contains all P-null sets, and any stochastic processes will be de5ned in this
space. Let �¿ 0 and denote by C([− �; 0];Rn) the space of all continuous functions de5ned on [− �; 0] with
values in Rn. Let us introduce the following norm in this space:

‖y‖� =max{|y(s)|: − �6s60} if y ∈ C([− �; 0];Rn):

Let L2(�;Ft0 ; C([ − �; 0];Rn)) denote all Ft0 -measurable C([ − �; 0];Rn)-valued random variables � with
E‖�‖2� ¡∞. We shall write L2(�;C([ − �; 0];Rn)) for L2(�;F; C([ − �; 0];Rn)). If x(t); t¿t0 − � is an
n-dimensional continuous stochastic process, de5ne x̂(t)={x(t+s): −�6s60} which is a C([−�; 0];Rn)-valued
process on t¿0.
With reference to Theorem 5:3:1 of Mao [9], for any given initial data x̂(t0)=� ∈ L2(�;Ft0 ; C([−�; 0];Rn)),

there exists a unique global solution to Eq. (3) which is denoted by x(t; t0; �) in this paper.
Eq. (3) is said to be exponentially stable in L2(�;C([−�; 0];Rn)) if there exists a pair of positive constants

M and � such that

E‖x̂(t; t0; �)‖2�6Me−�(t−t0)E‖�‖2�
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for all t0¿0 and � ∈ L2(�;Ft0 ; C([− �; 0];Rn)), while it is said to be almost surely exponentially stable if

lim sup
t→∞

1
t
log|x(t; t0; �)|¡ 0 a:s:

3. Stability

In the next section, we will 5nd stability criteria for the system given by (3), but 5rst we consider the
following system:

dx(t) = [A0x(t) + A1x(t − �)] dt + [B0x(t) + B1x(t − �)] dW (t); (5)

where W (t) is a scalar Brownian motion.

Theorem 1. Assume there exists a symmetric positive-de1nite matrix Q such that

2
√

�max(Q−1=2AT
1QA1Q−1=2)

+[
√

�max(Q−1=2BT
0QB0Q−1=2) +

√
�max(Q−1=2BT

1QB1Q−1=2)]2

¡ − �max(Q−1=2(QA0 + AT
0Q)Q−1=2): (6)

Then Eq. (5) is exponentially stable in L2(�;C([−�; 0];Rn)) and moreover; it is almost surely exponentially
stable.

Proof. Note that the left-hand side of (6) is nonnegative so Q−1=2AT
0QA0Q−1=2 must be negative-de5nite. Set

− � = �max(Q−1=2(QA0 + AT
0Q)Q−1=2); (7)

so �¿ 0. We divide the proof into three steps.
Step 1: By condition (6) we can 5nd � ∈ (0; �) such that

(1 + e��)
√

�max(Q−1=2AT
1QA1Q−1=2) + �max(Q−1=2BT

0QB0Q−1=2)

+ (1 + e��)
√

�max(Q−1=2BT
0QB0Q−1=2)�max(Q−1=2BT

1QB1Q−1=2)

+ e���max(Q−1=2BT
1QB1Q−1=2)¡� − �: (8)

We claim that there exists a C ¿ 0 such that∫ ∞

t0
e�tE(x(t)TQx(t)) dt6Ce�t0E‖�TQ�‖�; (9)

for all t0¿0 and � ∈ L2(�;Ft0 ; C([− �; 0];Rn)). Fix t0 and � and write x(t; t0; �) = x(t). Then Itô’s formula
yields that

e�tE(x(t)TQx(t)) = e�t0E(x(t0)TQx(t0)) + �
∫ t

t0
e�sE(x(s)TQx(s)) ds

+2
∫ t

t0
e�sE(x(s)TQA0x(s)) ds + 2

∫ t

t0
e�sE(x(s)TQA1x(s − �)) ds

+
∫ t

t0
e�sE(x(s)TBT

0QB0x(s)) ds +
∫ t

t0
e�sE(x(s − �)TBT

1QB0x(s)) ds
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+
∫ t

t0
e�sE(x(s)TBT

0QB1x(s − �)) ds

+
∫ t

t0
e�sE(x(s − �)TBT

1QB1x(s − �)) ds: (10)

We note that by condition (7)

2x(t)TQA0x(t)6− �x(t)TQx(t):

Also, note that for any  1 ¿ 0,

2
∫ t

t0
e�sE(x(s)TQA1x(s − �)) ds =

∫ t

t0
e�sE(2x(s)TQ1=2Q1=2A1x(s − �)) ds

6 1

∫ t

t0
e�sE(x(s)TQx(s)) ds +

1
 1

∫ t

t0
e�sE(x(s − �)TAT

1QA1x(s − �)) ds:

We can proceed in a similar fashion for the other terms in (10) and, hence,

e�tE(x(t)TQx(t))6 e�t0E‖�TQ�‖� +  1

∫ t

t0
e�sE(x(s)TQx(s)) ds

+
1
 1

∫ t

t0
e�sE(x(s − �)TAT

1QA1x(s − �)) ds

+
(
1 +

1
 2

)∫ t

t0
e�sE(x(s)TBT

0QB0x(s)) ds

+(1 +  2)
∫ t

t0
e�sE(x(s − �)TBT

1QB1x(s − �)) ds

6 e�t0E‖�TQ�‖� + C1

∫ t

t0
e�sE(x(s)TQx(s)) ds

+C2

∫ t

t0
e�sE(x(s − �)TQx(s − �)) ds;

where

 2 ¿ 0; C1 =  1 +
(
1 +

1
 2

)
�max(Q−1=2BT

0QB0Q−1=2);

C2 =
1
 1

�max(Q−1=2AT
1QA1Q−1=2) + (1 +  2)�max(Q−1=2BT

1QB1Q−1=2):

Hence,

E(x(t)TQx(t))6 e−�(t−t0)E‖�TQ�‖� + C1

∫ t

t0
e−�(t−s)E(x(s)TQx(s)) ds

+C2

∫ t

t0
e−�(t−s)E(x(s − �)TQx(s − �)) ds:
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Therefore, for any T ¿ t0,∫ T

t0
e�tE(x(t)TQx(t)) dt

6
∫ T

t0
e�t−�(t−t0)E‖�TQ�‖� dt + C1

∫ T

t0
e�t
∫ t

t0
e−�(t−s)E(x(s)TQx(s)) ds dt

+C2

∫ T

t0
e�t
∫ t

t0
e−�(t−s)E(x(s − �)TQx(s − �)) ds dt

6
1

� − �
e�t0E‖�TQ�‖� +

1
� − �

C1

∫ T

t0
e�sE(x(s)TQx(s)) ds

+
1

� − �
C2

∫ T

t0
e�sE(x(s − �)TQx(s − �)) ds:

Using the change of variable u = s − �, we can easily see that∫ T

t0
e�sE(x(s − �)TQx(s − �)) ds

6�e�(t0+�)E‖�TQ�‖� +
∫ T

t0
e�(u+�)E(x(u)TQx(u)) du:

Therefore,∫ T

t0
e�tE(x(t)TQx(t)) dt6

1
� − �

(1 + C2�e��)e�t0E‖�TQ�‖�

+
1

� − �
(C1 + C2e��)

∫ T

t0
e�sE(x(s)TQx(s)) ds:

Choose

 1 =
√

�max(Q−1=2AT
1QA1Q−1=2);

 2 =
√

�max(Q−1=2BT
0QB0Q−1=2)=�max(Q−1=2BT

1QB1Q−1=2):

Recalling (8), we see that

1
� − �

(C1 + C2e��)¡ 1: (11)

Then clearly there exists a C ¿ 0 such that∫ T

t0
e�tE(x(t)TQx(t)) dt6Ce�t0E‖�TQ�‖�;

and letting T → ∞ we obtain the required inequality (9).
Step 2: The next step is to show the exponential stability in L2(�;C([ − �; 0];Rn)). Using Itô’s formula

again, we see that

e�(t−�)E‖x̂(t)TQx̂(t)‖�6 E
(

sup
t−�6r6t

e�rx(r)TQx(r)
)

6 e�t0E‖�TQ�‖� + C1

∫ t

t0
e�sE(x(s)TQx(s)) ds
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+C2

∫ t

t0
e�sE(x(s − �)TQx(s − �)) ds

+2E
(

sup
t−�6r6t

∫ r

t0
e�sE(x(s)TQB0x(s)) dW (s)

)

+2E
(

sup
t−�6r6t

∫ r

t0
e�sE(x(s − �)TQB1x(s − �)) dW (s)

)
;

where C1 and C2 are the same as de5ned in Step 1. But, by the BuckhPolder–Davis–Gundy inequality (Ref.
Mao [9] or Revuz and Yor [11]) we have, for any  3 ¿ 0,

2E
(

sup
t−�6r6t

∫ r

t0
e�sE(x(s)TQB0x(s)) dW (s)

)

62
√
32E

(∫ t

t−�
e2�s|x(s)TQx(s)‖x(s)TBT

0QB0x(s)| ds
)1=2

62
√
32E

(
‖x̂(t)TQx̂(t)‖�

(∫ t

t−�
�max(Q−1=2BT

0QB0Q−1=2)e2�s|x(s)TQx(s)| ds
)1=2)

6 3e�(t−�)E‖x̂(t)TQx̂(t)‖�

+
1
 3
32e−�(t−�)�max(Q−1=2BT

0QB0Q−1=2)
∫ t

t−�
e2�sE‖x̂(t)TQx̂(t)‖� ds:

Similarly, for any  4 ¿ 0,

2E
(

sup
t−�6r6t

∫ r

t0
e�sE(x(s − �)TQB1x(s − �)) dW (s)

)

6 4e�(t−�)E‖x̂(t)TQx̂(t)‖�

+
1
 4
32e−�(t−�)�max(Q−1=2BT

1QB1Q−1=2)
∫ t

t−�
e2�sE‖x̂(t)TQx̂(t)‖� ds:

Therefore, if t¿t0 + �,

(1−  3 −  4)e�(t−�)E‖x̂(t)TQx̂(t)‖�

6e�t0E‖�TQ�‖� + (C1 + C2)
∫ t

t0
e�sE‖x̂(s)TQx̂(s)‖� ds

+C3e−�(t−�)
∫ t

t−�
e2�sE‖x̂(s)TQx̂(s)‖� ds;

where C3 = 32((1;  3)�max(Q−1=2BT
0QB0Q−1=2) + (1= 4)�max(Q−1=2BT

1QB1Q−1=2)). Similarly, if t06t6t0 + �,

e�(t−�)E‖x̂(t)TQx̂(t)‖�

6e�t0E
(
‖�TQ�‖� + sup

t06r6t
|x(r)TQx(r)|

)

6e�t0E‖�TQ�‖� + E
(

sup
t06r6t

[e�r|x(r)TQx(r)|]
)
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62e�t0E‖�TQ�‖� + (C1 + C2)
∫ t

t0
e�sE‖x̂(s)TQx̂(s)‖� ds

+( 3 +  4)e�(t−�)E‖x̂(t)TQx̂(t)‖�

+C3e−�(t−�)
∫ t

t−�
e2�sE‖x̂(s)TQx̂(s)‖� ds:

Then it follows that for all t¿t0,

(1−  3 −  4)e�(t−�)E‖x̂(t)TQx̂(t)‖�

62e�t0E‖�TQ�‖� + (C1 + C2)
∫ t

t0
e�sE‖x̂(s)TQx̂(s)‖� ds

+C3e−�(t−�)
∫ t

(t−�)∨t0
e2�sE‖x̂(s)TQx̂(s)‖� ds:

Letting  3 =  4 = 1=4, we obtain

e�(t−�)E‖x̂(t)TQx̂(t)‖�

64e�t0E‖�TQ�‖� + 2(C1 + C2)
∫ t

t0
e�sE‖x̂(s)TQx̂(s)‖� ds

+2C3e−�(t−�)
∫ t

(t−�)∨t0
e2�sE‖x̂(s)TQx̂(s)‖� ds

64e�t0E‖�TQ�‖� + 2(C1 + C2 + C3e��)
∫ t

t0
e�sE‖x̂(s)TQx̂(s)‖� ds

62(2 + (C1 + C2 + C3e��)C)e�t0E‖�TQ�‖�;

where (9) has been used. Therefore, the required result follows by setting M =2(2+ (C1 +C2 +C3e��)C)e��.
Step 3: All that remains is to show that the exponential stability in L2(�;C([−�; 0];Rn)) implies the almost

surely exponential stability of Eq. (5). This part of the proof is a standard result [6], and so we do not show
it here. The proof is complete.

4. Stability conditions for stochastic interval systems with a single time delay

Now, we are ready to establish a su3cient condition for the stability of Eq. (3)

dx(t) = [(A0 + IA0)x(t) + (A1 + IA1)x(t − �)] dt

+[(B0 + IB0)x(t) + (B1 + IB1)x(t − �)] dW (t);

where IA0 ∈ [− A0m; A0m]; IA1 ∈ [− A1m; A1m]; IB0 ∈ [− B0m; B0m] and IB1 ∈ [− B1m; B1m].

Theorem 2. Assume there exists a symmetric positive-de1nite matrix Q such that

2
[
�max(Q−1=2AT

1QA1Q−1=2) +
‖Q‖

�min(Q)
(2‖A1‖ ‖A1m‖+ ‖A1m‖2)

]1=2

+

{[
�max(Q−1=2BT

0QB0Q−1=2) +
‖Q‖

�min(Q)
(2‖B0‖ ‖B0m‖+ ‖B0m‖2)

]1=2
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+
[
�max(Q−1=2BT

1QB1Q−1=2) +
‖Q‖

�min(Q)
(2‖B1‖ ‖B1m‖+ ‖B1m‖2)

]1=2}2

¡ − �max(Q−1=2(QA0 + AT
0Q)Q−1=2)− 2‖Q‖ ‖A0m‖

�min(Q)
: (12)

Then Eq. (3) is exponentially stable in L2(�;C([−�; 0];Rn)) and moreover; it is almost surely exponentially
stable.

Before proceeding, we note the following results which are useful when we prove Theorem 2.

Lemma 1. For a positive-de1nite; symmetric matrix Q;

‖Q−1=2‖ ‖Q1=2‖6 ‖Q‖
�min(Q)

:

Proof. By de5nition

‖Q−1=2‖=
√

�max(Q−1=2Q−1=2):

Therefore,

‖Q−1=2‖2 = �max(Q−1=2Q−1=2) = �max(Q−1) =
1

�min(Q)

and so,

‖Q−1=2‖ ‖Q1=2‖= ‖Q−1=2‖ ‖QQ−1=2‖6‖Q‖ ‖Q−1=2‖2 = ‖Q‖
�min(Q)

:

Lemma 2. For a positive-de1nite; symmetric matrix Q and an n × n matrix A;

�max(Q−1=2(QA + ATQ)Q−1=2)6
2‖A‖ ‖Q‖
�min(Q)

:

Proof. Using Lemma 1, we estimate

�max(Q−1=2(QA + ATQ)Q−1=2) = �max[Q1=2AQ−1=2 + Q−1=2ATQ1=2]

6 ‖Q1=2AQ−1=2 + Q−1=2ATQ1=2‖62‖Q1=2AQ−1=2‖

6 2‖Q1=2‖ ‖A‖ ‖Q−1=2‖62‖A‖ ‖Q‖
�min(Q)

:

Lemma 3. If IA ∈ [− Am; Am]; then ‖IA‖6‖Am‖.

Proof. Consider two matrices A; B ∈ Rn×m satisfying |A|6B (elementwise), i.e. |aij|6bij ∀16i6n; 16j6m.
Now for all x with |x|= 1,

|Ax|2 =
n∑

i=1


 m∑

j=1

aijxj




2

6
n∑

i=1


 m∑

j=1

|aij‖xj|



2

6
n∑

i=1


 m∑

j=1

bij|xj|



2

= |B(|x1|; : : : ; |xm|)T|26

‖B‖

√√√√ m∑
j=1

|xj|2



2

= ‖B‖2:
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Hence,

|Ax|6‖B‖; ∀x such that |x|= 1

⇒ ‖A‖6‖B‖ since ‖A‖= sup{|Ax|: |x|= 1}: (13)

Since, by de5nition, |IA|6Am (elementwise), then by (13), ‖IA‖6‖Am‖. This completes the proof.

Lemma 4. For a positive-de1nite; symmetric matrix Q; and B and IB ∈ [− Bm; Bm];

�max(Q−1=2(BTQIB + (IB)TQB + (IB)TQIB)Q−1=2)6
2‖Q‖ ‖B‖ ‖Bm‖

�min(Q)
+

‖Q‖ ‖Bm‖2
�min(Q)

:

Proof. Using Lemma 3,

�max(Q−1=2(BTQIB + (IB)TQB + (IB)TQIB)Q−1=2)

6‖Q−1=2(BTQIB + (IB)TQB + (IB)TQIB)Q−1=2‖
62‖Q−1=2BTQIBQ−1=2‖+ ‖Q−1=2(IB)TQIBQ−1=2‖

62‖Q−1=2‖ ‖B‖ ‖Q‖ ‖IB‖ ‖Q−1=2‖+ ‖Q−1=2‖ ‖IB‖2‖Q‖ ‖Q−1=2‖

62‖Q−1=2‖ ‖B‖ ‖Q‖ ‖Bm‖ ‖Q−1=2‖+ ‖Q−1=2‖ ‖Bm‖2‖Q‖ ‖Q−1=2‖

=
2‖Q‖ ‖B‖ ‖Bm‖

�min(Q)
+

‖Q‖ ‖Bm‖2
�min(Q)

by recalling the proof of Lemma 1.

Proof of Theorem 2. Theorem 1 states that the exponential stability in L2(�;C([− �; 0];Rn)) and the almost
sure exponential stability of (5) are guaranteed if condition (6) is satis5ed. Hence, (3) is almost surely
exponentially stable if condition (6) is satis5ed for all IA0 ∈ [ − A0m; A0m]; IA1 ∈ [ − A1m; A1m]; IB0 ∈
[− B0m; B0m]; IB1 ∈ [− B1m; B1m], i.e.

2
√

�max(Q−1=2(A1 + IA1)TQ(A1 + IA1)Q−1=2)

+ [
√

�max(Q−1=2(B0 + IB0)TQ(B0 + IB0)Q−1=2)

+
√

�max(Q−1=2(B1 + IB1)TQ(B1 + IB1)Q−1=2)]2

¡ − �max(Q−1=2(Q(A0 + IA0)− (A0 + IA0)TQ)Q−1=2); (14)

for all IA0 ∈ [ − A0m; A0m]; IA1 ∈ [ − A1m; A1m]; IB0 ∈ [ − B0m; B0m]; IB1 ∈ [ − B1m; B1m]. Therefore, in
order to prove Theorem 2 we need only demonstrate that (12) guarantees (14). Firstly, we note that

−�max(Q−1=2(QA0 + AT
0Q)Q−1=2)− 2‖Q‖ ‖A0m‖

�min(Q)

6− �max(Q−1=2(Q(A0 + IA0) + (A0 + IA0)TQ)Q−1=2);
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by Lemmas 2 and 3. Now, using Lemmas 3 and 4, we can see that

�max(Q−1=2(A1 + IA1)TQ(A1 + IA1)Q−1=2)

6�max(Q−1=2AT
1QA1Q−1=2)

+ �max(Q−1=2(AT
1QIA1 + (IA1)TQA1 + (IA1)TQIA1)Q−1=2)

6�max(Q−1=2AT
1QA1Q−1=2) +

‖Q‖
�min(Q)

(2‖A1‖ ‖A1m‖+ ‖A1m‖2):

Therefore, it follows that

2
√

�max(Q−1=2(A1 + IA1)TQ(A1 + IA1)Q−1=2)

+ [
√

�max(Q−1=2(B0 + IB0)TQ(B0 + IB0)Q−1=2)

+
√

�max(Q−1=2(B1 + IB1)TQ(B1 + IB1)Q−1=2)]2

62
[
�max(Q−1=2AT

1QA1Q−1=2) +
‖Q‖

�min(Q)
(2‖A1‖ ‖A1m‖+ ‖A1m‖2)

]1=2

+

{[
�max(Q−1=2BT

0QB0Q−1=2) +
‖Q‖

�min(Q)
(2‖B0‖ ‖B0m‖+ ‖B0m‖2)

]1=2

+
[
�max(Q−1=2BT

1QB1Q−1=2) +
‖Q‖

�min(Q)
(2‖B1‖ ‖B1m‖+ ‖B1m‖2)

]1=2}2

:

Hence, it is clear that satisfaction of condition (12) implies satisfaction of condition (14). This completes the
proof.

5. Example

The applicability of the stability criteria presented in the previous section is demonstrated by the following
simple example, which is based on the following stochastic di/erential delay equation:

dx(t) = [(A0 + IA0)x(t) + (A1 + IA1)x(t − �)] dt

+[(B0 + IB0)x(t) + (B1 + IB1)x(t − �)] dW (t); (15)

where IA0 ∈ [−A0m; A0m]; IA1 ∈ [−A1m; A1m]; IB0 ∈ [−B0m; B0m]; IB1 ∈ [−B1m; B1m]. For the purposes
of this example we set Q = I . As a result, condition (12) is simpli5ed to the following:

2[‖A1‖2 + 2‖A1‖ ‖A1m‖+ ‖A1m‖2]1=2

+ {[‖B0‖2 + 2‖B0‖ ‖B0m‖+ ‖B0m‖2]1=2

+ [‖B1‖2 + 2‖B1‖ ‖B1m‖+ ‖B1m‖2]1=2}2

¡ − �max(A0 + AT
0 )− 2‖A0m‖;

namely,

2(‖A1‖+ ‖A1m‖) + (‖B0‖+ ‖B0m‖+ ‖B1‖+ ‖B1m‖)2

¡ − �max(A0 + AT
0 )− 2‖A0m‖: (16)
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If (16) is satis5ed, then (15) is exponentially stable in L2(�;C([− �; 0];Rn)) and almost surely exponentially
stable. Now, suppose the matrices A0; A0m; A1, etc. are as follows:

A0 =
[−9 1:5
−2 −9

]
; A0m =

[
1 0:5
0 1

]
; A1 =

[
1 0:5

0:25 0:75

]
;

A1m =
[

0 0
0:5 0:5

]
; B0 =

[
0:75 0:5
0:25 0:25

]
; B0m =

[
0:25 0:5
0:25 0:25

]
;

B1 =
[
0:25 0:75
0:25 0:25

]
and B1m =

[
0:25 0:25
0:5 0:25

]
:

It can easily be computed that �max(A0 +AT
0 )=−17:882; ‖A0m‖=1:281; ‖A1‖=1:279; ‖A1m‖=0:354; ‖B0‖=

0:966; ‖B0m‖= 0:655; ‖B1‖= 1:189 and ‖B1m‖= 0:655. Hence condition (16) is satis5ed. Therefore, in this
case, Eq. (15) is exponentially stable in L2(�;C([− �; 0];Rn)) and almost surely exponentially stable.

6. Generalisation to multiple time delays

In Section 4, we examined the stability of a stochastic interval system incorporating a single time delay.
This system can be generalised to the situation where it depends upon more than one past state:

dx(t) =


(A0 + IA0)x(t) +

k∑
j=1

(Aj +IAj)x(t − �j)


 dt

+


(B0 + IB0)x(t) +

k∑
j=1

(Bj +IBj)x(t − �j)


 dW (t); (17)

where IA0 ∈ [ − A0m; A0m]; IAj ∈ [ − Ajm; Ajm]; IB0 ∈ [ − B0m; B0m] and IBj ∈ [ − Bjm; Bjm] for 16j6k.
The stability criteria of Theorem 2 can be extended to cope with this type of system. Without presenting the
proof, we state these more general criteria.

Theorem 3. Assume there exists a symmetric positive-de1nite matrix Q such that

2
k∑

j=1

[
�max(Q−1=2AT

j QAjQ−1=2) +
‖Q‖

�min(Q)
(2‖Aj‖ ‖Ajm‖+ ‖Ajm‖2)

]1=2

+




k∑
j=0

[
�max(Q−1=2BT

j QBjQ−1=2) +
‖Q‖

�min(Q)
(2‖Bj‖ ‖Bjm‖+ ‖Bjm‖2)

]1=2


2

¡ − �max(Q−1=2(QA0 + AT
0Q)Q−1=2)− 2‖Q‖ ‖A0m‖

�min(Q)
: (18)

Then Eq. (17) is exponentially stable in L2(�;C([−�; 0];Rn)) and moreover; it is almost surely exponentially
stable.
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