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Abstract

This paper examines the asymptotic behaviour of the stochastic extension of a fundamentally im-
portant population process, namely the Lotka—\Volterra model. The stochastic version of this process
appears to have far more intriguing properties than its deterministic counterpart. Indeed, the fact
that a potential deterministic population explosion can be prevented by the presence of even a tiny
amount of environmental noise shows the high level of difference which exists between these two
representations.
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1. Introduction

Deterministic subclasses of the Lotka—\Volterra model are well-known and have been
extensively investigated in the literature concerning ecological population modelling. One
particularly interesting subclass describes the facultative mutualism of two species, where
each one enhances the growth of the other, represented through the deterministic equations

x1(1) = x1(1) [ b1 — a11x1(t) + a12x2(1) ],

x2(1) = x2(1) [ b2 — azox2(t) + az1x1(1) ] 1)
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for a2 anday1 positive constants. The associated dynamics have been developed by, for
example, Boucher [1], He and Gopalsamy [2] and Wolin and Lawlor [9]. Now in order
to avoid having a solution that explodes at a finite timgo; is required to be smaller
thanaiiazz. To illustrate what happens when the latter condition does not hold, suppose
thata; = azp = « andaiz = a1 = B (i.e., we have a symmetric system) amtl< 2.
Moreover, let us assume thiat = b» = b > 1 and that both species have the same initial
value x1(0) = x2(0) = xg > 0. Then the resulting symmetry reduces system (1) to the
single deterministic differential equation

X)) =x(O[b+ (—a+ B)x(1)]
whose solution is given by
b

x(t) = .
—(—a + ) + FHEHE it

Now the assumption that? < g2 causesx() to explode at the finite time= Z{In(b +
[—a+ Blxo) — In([—a+ Blxo)}. Nevertheless, this can be avoided, even when the condition
aioaz1 < apiazz does not hold, by introducing (stochastic) environmental noise.

Let (2, F, {F:}i>0, P) be a complete probability space with filtrati@f; }; >0 satisfy-
ing the usual conditions, i.e., it is increasing and right continuous wkjleontains all
P-null sets (see Mao [6]). Moreover, let(t) be a one-dimensional Brownian motion de-
fined on the filtered space aftdl. = {x € X" x; > 0 for all 1 < i < n}. Finally, denote

the trace norm of a matrix by |A| = \/tracg AT A) (whereA” denotes the transpose of
a vector or matrixA) and its operator norm byA || = sup|Ax|: |x| = 1}.

Now consider a Lotka—\Volterra model for a system withinteracting components,
which corresponds to the case of facultative mutualism, namely

n
)'Ci(t)zxi(t)<bi+2aijxj'), 1<i<n.
j=1
This equation can be rewritten in the matrix form
X (1) =diag(x1(1), ..., x, (1)) [+ Ax(1)], Vi =0, (2)

wherex (1) = (x1(2), ..., xa(O))T, b = (b;)1x, aNdA = (aij)nxn- Stochastically perturbing
each parameter

ajj — ajj + ojjuw(t)
results in the new stochastic form

x(1) =diag(x1(0), ..., x,())[(b+ Ax(®)) dt + ox (1) dw(t)], Vi >0. (3)
Hereo = (0;;)nxn, and we impose the condition
0; >0, ifl1<i<n,
0;j =20, ifi#j.

For a stochastic differential equation to have a unique global solution (i.e., no explosion

in a finite time) for any given initial value, the coefficients of Eq. (2) are generally required

(HI) {
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to satisfy both the linear growth condition and the local Lipschitz condition (cf. [3—7]).
However, the coefficients of Eq. (3) do not satisfy the linear growth condition, though
they are locally Lipschitz continuous, so the solution of Eq. (3) may explode at a finite
time. Under the simple hypothesis (H1), the following theorem shows that this solution is
positive and global.

Theorem 1 (Mao et al. [8]).Let us assume that hypothesis (H1) holds. Then, for any system
parameters b € R", A e W and any given initial value xo € ', there is a unique
solution x(¢) to Eq. (3) ont > 0. Moreover, this solution remainsin %’ with probability 1,
namely x (t) € W for all + > 0 almost surely.

The above result reveals the important role that environmental noise plays in population
dynamics. The idea that even a tiny amount of stochastic noise can suppress an imminent
deterministic explosion in a number of co-habiting species brings a whole new dimension
into the study of population modelling.

2. Asymptotic moment estimation

Since Eq. (3) does not have an explicit solution, the study of asymptotic moment behav-
iour is essential if we are to gain a deeper understanding of the underlying process. This
paper is essentially a continuation of the moment results derived by Mao et al. [8].

Theorem 2. Let the system parameters b € R" and A € R"*" be given, and assume that
hypothesis (H1) holds. Then, for any 6 € (0, 1), there exists a positive constant Ky such
that, for any initial value xo € %"}, the solution of Eq. (3) has the property

! n
lim sup%E[/ in2+9(s)ds:| < Ky. (4)
0 i=1

t—00

Proof. Define aC?-functionV : 9% — % by

Vix)= ix?.
i=1

According to Ité’s formula,
n n 1 n n 2
dV(x(t)) = [Z@xi (b,’ + Zaijx.,') + > 29(9 — 1)x?<2xja,~j> :|dt
i=1 j=1 i=1 j=1

n n
+ Z@x? Zcr,-jxj dw(t).
i=1 j=1
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Moreover, it is easy to show that

n n
Z@xi (bi + Zaijx]) Z@x,|bll + Z Z laijlxix;
i=1 j=1

i=1 j=1

and

Zeu-en?(ija,j) 29(1 0)x a2,
i=1 j=1

As a result, we obtain

9(1 0)
V(x() < [QZUa |x,+22|a,,|x,x, ggxizw} dt

i=1 j=1 i=1
n n
+0) xPY oijxjdw(). (5)
e

Furthermore, by taking into consideration that fact that the polynomial

9(1 0)
92|b |x; +Z Z|a,,|x xj — aﬁxl?”

i=1 j=1 i=1

has an upper positive bound, sy, inequality (5) yields

t

V(o) + 9(1 9)/2 o2x 12+0 ds <V (x(0)) + /KgdS+M(t): (6)
0
where
- n
M(t)=0 f D Do dw(s)
o i=1 j=1

is a real-valued continuous local martingale vanishing :at0. Taking expectations on
both sides of (6) then results in

t
" 4
246
E|:/2xi dsi| < 69(1_9)(V(x(0))+K9t),
0 '=

o =min { 3, 1<l<n}

The required assertion (4) follows immediately:
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3. Pathwise estimation

Theorem 3. Let usassume that hypothesis (H1) holds. Moreover, let the system parameters
ben", A e W andtheinitial value xo € )’} begiven. Then, thereexistsa K > 0, which
isindependent of xg but not necessarily of the system parameters, such that

limsup— |:|n(l_[x,(t)>+ —Amin(o U)/|X(S)| d5:|<K as, (7)

11— 00
where Aimin(o T ) isthe smallest eigenvalue of the matrix o 7 0.

Proof. For each X i < n, applying It6’s formula to lix; (¢)) results in

n

n 2
dIn(x; (1)) = |:b +Za,,x, (Za,'jxj):|dt+20,'jxjdw(t),
j=1

j=1

which implies that

! n n 2
In(xi (t)) = In(xi (0)) + / |:b,' + Za,'jx.,' — %(Zmﬂq) :|ds + M; (1), (8)
0 j=1 j=1

where
t

M,~(t)=/20,~jxjdw(s)
o /=1

is a real-valued continuous local martingale vanishing-a0 with quadratic form

(M 1), M(t) /(Za,]x]) ds.

Fix ¢ € (O, %) arbitrarily. For every integer > 1, using the exponential martingale inequal-
ity (cf. Mao [6, Theorem 1.7.4]) we have
& 2 1
P{ sup [M,-(t) — (M), M,»(t))} > —Ink} <5
0<i<k 2 k

An application of the well-known Borel-Cantelli lemma yields that, with probability one,

& 2
sup [Mi(t) - E(Mi(t), Mi(t)>:| < —Ink

&

0<r<k

holds for all but finitely many. In other words, there exists &, C 2 with P(£2;) =1
such that for anw € £2; an integelk; = k; (w) can be found such that

2
My < S(Mi(0). M)+ Sk, 0<1 <k,
I
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foranyk > k; (w). Thus Eq. (8) results in

{ n n 2
1-¢ 2
In(x,-(t))<In(x,-(0))+/[b,~+2a,~jxj— 5 (Zaijxj') }ds+glnk (9)
0 j=1 j=1
for 0 < < ki(w) andk > ki(w) wheneverw € £2;. Now let 29 = (/_; £2;. Clearly
P(£20) = 1. Moreover, for anyw € £29, let ko(w) = maxXk; (w): 1 <i < n}. Then, for
anyw € 2o, it follows from (9) that

Z In(x; (1) < Z In(x:(0))
i=1 i=1

rY - 1-¢f 2 2n
+/Z|:b,'+2a[jxj'—T<Z()’ij') :|ds+?lnk
0 i=1 j=1 j=1

forall 0 <# <k andk > ko(w). Note thaty }_; (3"'}_; 0ijx;)? = |ox|?. Thus

t
- 1 ¢ 2
In<l_[x,-(t)> +(Z—§)/|ax| ds
i=1 0
n ! n n
1 2 2”1
<|n(l_[x,'(0)>+/<Z|:b[+2ainj] _Z|GX| )ds+?lnk.
i=1 o \i=1 j=1

Since

n

n
1
Z|:bi —I—Zaijxj] — Z|ax|2 <K,
j=1

i=1
for some positive constaiif, it follows that forw € 2o we have

n ! n
1 ¢ 2n
In(l_[xi(t)> + (Z - E) / lox|?ds < |n(l“[x,~(0)> + K+ — Ink,
i=1 0 i=1
for 0 <t < kandk > k; (w). Consequently, for any € 2o, if k — 1 <t <k andk > k(w),

t
1 - . 1-2¢ 2 In([ 1721 xi (0)) 2n
t|:ln<l_£x,(t))+—4 /|0x| ds:|<7k_l +K+8(k_1) Ink,
= 0

which implies that

t
1 n 1—2¢
limsup—|In (1 _ 2d
prt[ (gx,()>+ 2 0/|ax| s]

[In(ni’:lxxon N 2n
k—1 ek —1)

< limsup

k— 00

Ink—i—K}:K
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almost surely. On noting théwx|2 = x" 0T ox > Amin(c 7o) |x |2, it then follows that

t

limSUP% [In(]_[xi(t)> +Amin(oTa)1_428 /|x(s)|2ds:| <K as.

t—>00 .
i=1 0

Letting ¢ tend to zero yields the required assertiom

Theorem 4. Let us assume that hypothesis (H1) holds. Then, for any system parameters
beNf*, A e N and any initial value xg € R",

In([Ti_q xi () .

limsup <n as. (20)

t—00 In(r)

Proof. For each K i < n, applying It6's formula tae”? In(x; (¢)) for y > 0 results in

’ 0 n 2
eVt |n(x,~ (t)) = In(x,- (0)) + / evs |:b,- + Zaijx-i — %(ijxj) :| ds
j=1

0 j=1
13
+y/eVSIn(xi(s))ds+M,-(t), (11)
0
where
{ n
M,~(t)=/eysza,~,~x,~dw(s)
0 j=1

is a real-valued continuous local martingale vanishing-aD with quadratic form

t n 2
(Mi (1), My (1)) = / e2”<2cnm) ds.
j=1

0

Fix anye € (0, 1) andd > 1. For every integet > 1, on using the exponential martingale
inequality we have

e _ k Geyk 1
P{ sup | Mi(t) — ze V(M (1), M (1)) | > — Ink <5
0<r <k 2 P k

By the Borel-Cantellilemma we observe that there exist@aa 2 with P(£2;) =1 such
that for anyw € £2; an integek; = k; (w) can be found such that

ek
M (1) < ST H My (0). My 0)) + ——Ink
&

forall 0 <7 <k andk > k; (w). Thus Eq. (11) leads to
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t

eV! |n(x,~ (t)) < |n(x,~ (0)) +y / 28 |n(x,~ (s)) ds
0
t

n n 2

, 1

+ / e’’ |:b,' + Zaijxj — E(Zai-jxj) :| ds

0 j=1 j=1
t

£ " ? Herk
+§eyk/e2ys( E cr,-jxj> ds + —1Ink
e
0 j=t

for 0 < r < k andk > k; (w) whenevew € £2;, which can be rewritten as

e’ In(x; (1)) <In(x;(0))

p - 1—ge v k=5) " 2
+)//€ys|:bi —i—Zaijxj — f(ZG{jx]') j|ds
i=1

0 j=1

t

Ink—l—/e’” |n(xi(s)) ds. (12)
0

ferk
_l’_

Now let 20 = (N}, §2;. Clearly P(£209) = 1. Moreover, for anyw € £2o, let ko(w) =
maxk; (w): 1 <i < n}. Then, for anyw € 2, it follows from (12) that

n n
e’! In(l_[x,»(t)) < Zln(xi(O))
i=1 i=1
t n n n 2
1— ge Vk—9)
+/eySZ|:bi + Zaijxj - + (Zaijxj) j|ds
0 i=1 j=1 Jj=1

n@evrk

&

t

Ink+y / e’ Z In(x,- (s)) ds
0 i=1

+

forall 0 < < k andk > ko(w). Since for positive constarkt

n

n n 2
1
E |:b,'+ E a,-jxj—i( E G,'ij) +y|n(x,~):| <K, Vxefﬁ’}r,
=1 =1

i=1

we have

- ! K K nBevk
e’'In l_[xi(f) <In HXi(O) b — =+ g
i=1 i=1 14 &

14
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0 : : . : . :

PN e

In(x_1(t)*x_2(t))/In(t)

L | L | L |
2 4 6 8 10
Time: t

Fig. 1. A sample path din([T%_; x; (1))1/In(1) produced by generating $@oints with time stepr = 10> and
initial condition x1 (0) = x2(0) = 50.

for all 0 <7 < k andk > ko(w). Consequently, for any € 20, if (k — 1) <7<k and
k > k(w), it follows that

In([ Ty xi (1)) 1 —y(k=1) - ' K nbe”
o gln(k—1)|:e In Ex,(O) +y+ ——Ink |,

which implies that
noo ¥
|imsup|n(l_[’:lxl ) < née
t—00 |n(t) &
By lettinge — 1,6 — 1 andy — 0, we then obtain

In(Tizyxi) _

sn as.

a.s.

limsu
AL Y

as required. O

Figure 1 illustrates the above theoretical results by highlighting the “bounded” nature
of the process (heig = 1,4;; =1 ando;; = 10 for everyi, j = 1, 2). Note the controlling
influence of the downward surges.

The conclusion of Theorem 4 is very powerful since it is universal in the sense that it is
independent both of the system parameteesi” and A € R"*", and of the initial value
xp € R Itis also independent of the noise intensity matrias long as the noise exists
in the sense of hypothesis (H1). However, since estimation is based on the multiplication
[17_1 xi (1), it would be better to use instead the nopnir)|. To do so we need additional
conditions on the noise intensity matrix.

4. Pathwise estimation with additional conditionsimposed on o

Improved results concerning the pathwise behaviour of the solution can be achieved by
introducing somewhat more restrictive assumptions. A numerical example given at the end
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of this section shows that applying our theoretical results to specific practical situations is
a relatively simple procedure.

Consider a new hypothesis in which we assume the existence of two coristartg,
with 2p > A, such that

H2) |diag(x1, ..., x)ox]2 < Alx|4, Vx e R,
Ix” diag(x1, ..., x)ox|? > plx|8, Vi e R

Then we can use this to develop a new suite of theorems.

Theorem 5. Let us assume that hypothesis (H1) holds, and that there exist two positive
constants A and p, with 2p > A, such that hypothesis (H2) also holds. Moreover, let the
system parameters b € R, A € W and the initial value xo € %', be given. Then, with
probability 1,

t
. 1 1) 2 2 nuzéz 218
limsup- In t ds | < ,
Ao [zp—)\ (lx)] )+/|x(s)| S} G_D@2p—12 " 2p_a
0

(13)
where u = maxla;;l, |b;|: 1<i, j <n} and

_np+ 24 Jnpnp+2)

nu+2

)

Proof. Define aC?-functionV : 9% — % by
V(x) =In(|x|?).

Then applying It6’s formula yields

dv(x@) = éﬂ diagix1, . .., x,) (b + Ax) dt

1 . 2
+ — trace] |diag(x1, . .., x,)o x|
|x|?

2

. 2
|xT diag(x1, . ..,x,l)ax| dt
x4

2
+ WXT diagx1, ..., xp)ox dw(t). (24)
X

Now Eq. (14) can be rewritten in the form

2 n n n
dv(x(t)) = {—2 [Zbix,-z + inzzaijx./}
Ix] i=1 i=1 j=1
1 n n 2 2 n n 2
+ W(Zx?chxj) - W(inzszxf) }dt
i=1 j=1

i=1 j=1
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|x|2 Zx Za,jx dw(t).

Moreover, taking into account that

n 2 n n n
0<<2xi> <2122xi2 = in<ﬁ|x|
i=1 i=1

i=1 i=1
results in

1
e xTdiagxa, ..., x2) (b + Ax) < pu(Valx|+1), VxeRn,

wherep = max|a;;|, |b;]: 1< i, j < n}. Consequently, Eq. (14) becomes

t

V(x(®) < V(x(0) +/[2u(ﬁ|x| +1) + Alx|?] ds

0
t
2 T Hi 2
- W|x dlagxl,...,xn)ax| ds + Mi(t), (15)
0

where

Ml()—/l |22x Za,,x,dw(s) f| o xT diagix1, ..., xp)ox dw(s)

is a real-valued continuous local martingale vanishing-aD with quadratic form
13
4 ;. 2
(M1(t), M1(1)) = W|x diagxy, ..., x,)ox| ds.
0

Fix any e > 0. By the exponential martingale inequality we have that for every integer
k>1
€ Ink 2
P} osup | Mi(t) — —(M1(1), M1(1)) | > 4— ¢ < k™%
0<r<k 4 e
Since Y22, k=2 converges, the application of the Borel-Cantelli lemma proves that for
almost allw € 2 there exists a random integey(w) such that for alk > ko(w)
4Ink
sup (Ma(1) — —(Ml(t) M1(1))) < —,
o< <k e

which implies

e 4ink
Ma(1) < Z(Ma(t), Ma() + —— onO< 1 <k.
&
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By taking into consideration inequality (15), assumption (H2), and the above results, we
then obtain

t

4Ink
V(x(t)) < V(x(O)) +/[2u(ﬁ|x| + 1) —(2p—Xr— 8p)|x|2] ds + Tn
0

Now, since 2 > A, we can choose small enough to ensure thap 2- ¢p > A. Thus, for
anys$ > 1, we have the inequality

2
(5—1)(2/)—)\)| 2< npeé

ZM(\/’_l|x|+1)— 3 X \m'F

2u.

As a result, we obtain

t

20— A
V(x(t))+(pT—8p>/|x(s)‘2ds
0

nus
(6 —1)(2p— )
In particular, for almost allb € £2, if k — 1 < <k andk > ko(w), it follows that

t
%|:V(x(t)) n <2p8_k —8p)/|x(s)|2ds:|
0

1 4Ink nu2s k
<—k_1[v(x(0))+ . }+[(5—1)(2p—)\)+2“}k—1‘

Whence letting — oo (sok — o0), and there — 0, results in

t
. 1 é 2 2 nuzéz 2ud
limsup- In t ds | < .
Ao [zp—)\ ()] )+/|x(s)| S} G_D@2p—12 " 2p_a
0

4Ink
<V(x(0))+|: +2;L}t+— on 0< 1 <k.
&

Since the right-hand side of this equation is minimised when
_np+2+ npnp +2)

N nu+2 ’

the required assertion follows.oO

)

Theorem 6. Let us assume that hypothesis (H1) holds, and that there exist two positive
constants A and p, with 2p > A, such that hypothesis (H2) also holds. Moreover, let the
system parameters b € R, A € W and the initial value xo € %’} be given. Then, with
probability 1,

: In(|x(1)]) P
"[Tlsc;‘p In(z) <2p—k'

(16)
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Proof. Let us define the following2-functionV : R x Ry — Ry such that
Vx,t)=e'In(|x|?).

Then applying 1té’s formula yields
2
dv(x@t),1) =e'In(|x|?) +ethTdian1, o xn)(b+ Ax)dt
X
t 1 f 2
+e' —= trac |d|an1, e xn)ax|
|x|2
2 7. 2
— —|x diag(x1, ...,xn)crx| dt
|x|4

2
+e’WxT diag(x1, ..., xp)ox dw(r). (17)

Moreover, it is easy to show that

1 .
WxT diag(xs, ..., x) (b + Ax) < pu(Vnlx| +1), Vx e,

wherep = max{|a;;|, |bi: 1< i, j <n}. As aresult, Eq. (17) yields

t
V(x@),1) < V(x(O),O)—i—/e" In(|x(s)[?) ds
0

t

—l—/eS[Z,u,(«/ﬂx(sﬂ + 1) + )L|x(s)’2] ds
0
t

_/es |x(§)|4|deiag(x1(S),-.-,xn(S))UX(S)|2dS+M1(t)’ (18)

where
t

Ml(t)zfes 2 xT diag(x1(s), . .., xa(s))ox(s) dw(s)
0

|x(5)[2

is a real-valued continuous local martingale vanishing-aD with quadratic form

2s
|x4(i)|4 |xT (s) diag(x1(s), - . ., Xn (s))ox (5) |2ds_

t
(M1(), M1(1)) = /
0
Given anye > 0,0 > 1 anda > 0, on exploiting the exponential martingale inequality
once again, we can show that for almostalE §2 there exists a random integkf(w)
such that, for all integek > ko(w),

ge ke 20e% Ink
(M1(1), My (D)) + ————, forall 0< 1 < ka.
&

Mi(t) <
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By taking into consideration inequality (18), hypothesis (H2), and the above results, we
then obtain

! t
VE0.0) < V(0.0 + [ () P)as + [ ¢ 2u(vi o] +2)
0 0
ka
—(2p—X1— 8ef(k°‘75)p)|x(s)|2] ds + 29%"”( (19)

for all 0 <t < ka. Now, since 2 > A, we can choose small enough to ensure that
(2 —¢)p > A, namely, choose € (0, (20 — 1)/p). Moreover, there exists a positive con-
stantx such that

In(1x1%) +2u(Vr x| +1) — 20 — 2 —ep)Ix|? <k,  Vx € R
Consequently, inequality (19) yields

ko
e |n(‘x(t)‘2) < |n(|x(0)|2) +re —k + %eflnk on 0< r < ka,
which implies that
ko—t
In(‘x(t)‘z) <e™! [ln(|x(0)|2) — K] + K+ %?egilnk on 0<r < ka.

In particular, for almost alb € £2, if (k — D)o <t < ka andk > ko(w), it follows that

In(lx(@)?) _ e~k-De ) K
o Sink—1D [In(lx©@]r%) =] + Intk — 1)
w on 0< t <ka.
elnk — 1)

Whence letting — oo (sok — oo t00) yields

| 2 2
lim supM < —ee“ a.s.

t—00 In(t) &
Finally, by lettingé — 1, — 0 ande — (20 — 1)/p, we obtain

In(|x(r)|? 2
lim sup (lx(1)%) < 0

t—00 In(z) 2p — A

which is the required assertiont

a.s.

Let us now discuss a simple numerical example which not only demonstrates that the
set of functions and parameters satisfying hypothesis (H2) is not empty but also illustrates
the estimation obtained by Theorem 6. Consider the gas@ with

1 11 2 1
b=<1>, A:<1 1) and a:(l 2).
Itis easy to see that

‘dianl, xz)crx‘z < 5|x|4,
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since

) 2 X 0 2 1 X
wo=|(3 2)C 3(2)

= Ax] + 4xPxo 4 2x2x3 + dxrxS 4 Axg

2

and
5|x |4 - |dian1, X2)oX |2 = xf - 4xfx2 + 8xfx22 — 4x1x§ + xg
=x§(x1 — 2x2)% + x5(x2 — 2x1)* > 0.
Similarly, the inequality

. 2
‘xT diag(x1, xz)crx‘ > 3|x|6

(1 s (O 2 1\ (x1\?
X o )\t 2)\x

= 4xf 4 AxDxp 4 5xx2 + 10x3x3 + 5x2x5 4 dxpxs + 4xS

holds, since

‘xT diag(x1, xz)crx‘z =

and

|xT diag(x1, x2)6x|2 —3Ix|®
= x? + 4xPxp — AxPx3 + 10xi°’x§ — x5 + Ax1x3 + xg
2
= (xf + xg) + xlxz[xf(xl — 2X2)2 + x%(xz — 2x1)2 + ?)(xi1 + xg)]
>0.

We have therefore proved that there exists a pair of parameter&§ andp = 3, for the
above specified matrix which satisfy hypothesis (H2). As a result, Theorem 6 yields

InGx @D _

limsup <3 as. (20)

oo IN()
This means that neither of two species will grow faster than a polynomial (ofdjroé
order 3. Figure 2 shows a sample path afrr)|)/In(z) which supports this theoretical
result.

5. Summary

Our aim in this paper is to discuss the asymptotic properties of the stochastic Lotka—
\olterra model in populations dynamics. In our earlier paper [8] we revealed an important
fact that even a tiny amount of stochastic noise can suppress an explosion in populations
dynamics. Due to the page limit we have not investigated in [8] the asymptotic behaviour
of the stochastic populations dynamics but the theory there guarantees the nice property
that the solution of the stochastic Lotka—Volterra model will remain in the positive cone
with probability one. Making use of this property we have in this paper designed various
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In(Ix(O))/In(t)
=
e
3
i%
<=
<
=

2 ‘ 4 ' 6 ' 8 ' 10

Time: t
Fig. 2. A sample path din(|x(z)|)]/ In(¢) produced by generating iq‘noints with time stepA = 105 and initial
conditionx1 (0) = x2(0) = 50.

types of Lyapunov functions to discuss the asymptotic behaviour in some detail. Several
moment and pathwise asymptotic estimators are obtained. These essentially enhance each
other, so that they can be used to reveal better features of the stochastic Lotka—Volterra
model. Two computer simulations are presented which support the theoretical results.
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