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Abstract

Stability of stochastic di#erential equations with Markovian switching has recently been dis-
cussed by many authors, for example, Basak et al. (J. Math. Anal. Appl. 202 (1996) 604), Ji
and Chizeck (IEEE Trans. Automat. Control 35 (1990) 777), Mariton (Jump Linear System in
Automatic Control, Marcel Dekker, New York), Mao (Stochastic Process. Appl. 79 (1999) 45),
Mao et al. (Bernoulli 6 (2000) 73) and Shaikhet (Theory Stochastic Process. 2 (1996) 180), to
name a few. The aim of this paper is to study the asymptotic stability in distribution of nonlinear
stochastic di#erential equations with Markovian switching.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Stability of stochastic di#erential equations with Markovian switching has recently
received a lot of attention. For example, Ji and Chizeck (1990) and Mariton (1990)
studied the stability of a jump equation

dX (t) = A(r(t))X (t) dt; (1.1)

where r(t) is a Markov chain taking values in S = {1; 2; : : : ; N}. Mao (1999) inves-
tigated the exponential stability for general nonlinear stochastic di#erential equations
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with Markovian switching

dX (t) = f(X (t); t; r(t)) dt + g(X (t); t; r(t)) dB(t): (1.2)

Shaikhet (1996) took the time delay into account and considered the stability of a
semi-linear stochastic di#erential delay equation with Markovian switching, while Mao
et al. (2000) investigated the stability of a nonlinear stochastic di#erential delay equa-
tion with Markovian switching.
Most of these papers are concerned with asymptotic stability in probability or in

mean square (i.e. the solution will tend to zero in probability or in mean square).
However, this asymptotic stability is sometimes too strong and in this case it is useful
to know whether or not the solution will converge in distribution (not necessary to
converge to zero). This property is called asymptotic stability in distribution. Basak
et al. (1996) discussed such stability for a semi-linear stochastic di#erential equation
with Markovian switching of the form

dX (t) = A(r(t))X (t) dt + �(X (t); r(t)) dB(t): (1.3)

Our aim is to establish much more general criteria on the asymptotic stability in dis-
tribution for a nonlinear stochastic di#erential equation with Markovian switching

dX (t) = f(X (t); r(t)) dt + g(X (t); r(t)) dB(t): (1.4)

In Section 2, we shall give the formal deKnition of the asymptotic stability in distribu-
tion. In Section 3, a suLcient criterion on the asymptotic stability in distribution will
be established under very general conditions, namely properties (P1) and (P2) (see the
deKnitions below). Section 4 provides some suLcient conditions in terms of Lyapunov
functions for properties (P1) and (P2) to hold and hence gives (indirectly) another
criterion on the asymptotic stability in distribution in terms of Lyapunov functions.
To make our theory more applicable, we establish a new criterion on the asymptotic
stability in distribution in terms of M-matrices in Section 5. Let us emphasize that to
apply this new criterion all we need to do is to verify the matrix A (see (5.5) below)
formed by the coeLcients of the equation is an M-matrix and this can be done very
easily using the theory presented in Berman and Plemmons (1994). We also discuss
an example to illustrate this new technique of M-matrices in the study of stochastic
stability.

2. Stochastic di�erential equations with Markovian switching

Throughout this paper, unless otherwise speciKed, we let (;F;Ft ; P) be a complete
probability space with a Kltration Ft satisfying the usual conditions (i.e. it is right con-
tinuous and F0 contains all p-null sets). Let B(t)=(B1

t ; : : : ; B
m
t )

T be an m-dimensional
Brownian motion deKned on the probability space. Let | · | denote the Euclidean norm
for vectors or the trace norm for matrices.
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Let r(t), t¿ 0, be a right-continuous Markov chain on the probability space taking
values in a Knite state space S = {1; 2; : : : ; N} with generator � = (�ij)N×N given by

P{r(t + �) = j|r(t) = i}=
{

�ij�+ o(�) if i �= j;

1 + �ij�+ o(�) if i = j;

where �¿ 0. Here �ij ¿ 0 is transition rate from i to j if i �= j while

�ii =−
∑
i �=j

�ij:

We assume that the Markov chain r(·) is independent of the Brownian motion B(·). It
is well known that almost every sample path of r(t) is a right-continuous step function
and r(t) is ergodic.
Consider a stochastic di#erential equation with Markovian switching of the form

dX (t) = f(X (t); r(t)) dt + g(X (t); r(t)) dB(t) (2.1)

on t¿ 0 with initial value X (0) = x∈Rn, where

f :Rn × S → Rn and g :Rn × S → Rn×m:

For the existence and uniqueness of the solution we shall impose a hypothesis:

(H) Both f and g satisfy the local Lipschitz condition and the linear growth condition.
That is, for each k = 1; 2; : : : ; there is an hk ¿ 0 such that

|f(x; i)− f(y; i)|+ |g(x; i)− g(y; i)|6 hk |x − y|
for all i∈ S and those x; y∈Rn with |x| ∨ |y|6 k; and there is, moreover, an
h¿ 0 such that

|f(x; i)|+ |g(x; i)|6 h(1 + |x|)
for all x∈Rn and i∈ S.

It is known (cf. Mao, 1999) that under hypothesis (H), Eq. (2.1) has a unique contin-
uous solution X (t) on t¿ 0. Let C2(Rn × S; R+) denote the all nonnegative functions
V (x; i) on Rn × S which are continuously twice di#erentiable in x. If V ∈C2(Rn × S;
R+), deKne an operator LV from Rn × S to R by

LV (x; i) =
N∑

j=1

�ijV (x; j) + Vx(x; i)f(x; i) +
1
2
trace[gT(x; i)Vxx(x; i)g(x; i)]; (2.2)

where

Vx(x; i) =
(
@V (x; i)

@x1
; : : : ;

@V (x; i)
@xn

)
; Vxx(x; i) =

(
@2V (x; i)
@xi@xj

)
n×n

:

For the convenience of the reader we cite the generalized Itô formula established by
Skorohod (1989, Lemma 3, p. 104) as a lemma.
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Lemma 2.1. Let V ∈C2(Rn × S; R+) and  1;  2 be bounded stopping times such that
06  16  2 a.s. If V (X (t); r(t)) and LV (X (t); r(t)) are bounded on t ∈ [ 1;  2] with
probability 1, then

EV (X ( 2); r( 2)) = EV (X ( 1); r( 1)) + E
∫  2

 1
LV (X (s); r(s)) ds: (2.3)

In this paper, whenever we apply this formula we will deKne the bounded stopping
times  1 and  2 such that {X (t):  16 t6  2} is bounded in Rn with probability 1 and
hence V (X (t); r(t)), etc. become bounded on t ∈ [ 1;  2].

We conclude this section by deKning the asymptotic stability in distribution for
Eq. (2.1). Let y(t) denote the Rn × S-valued process (X (t); r(t)). Then y(t) is a time
homogeneous Markov process. Let p(t; x; i; dy × {j}) denote the transition probability
of the process y(t). Let P(t; x; i; A× B) denote the probability of event {y(t)∈A× B}
given initial condition y(0) = (x; i), i.e.

P(t; x; i; A× B) =
∑
j∈B

∫
A
p(t; x; i; dy × {j}):

De�nition 2.1. The process y(t) is said to be asymptotically stable in distribution if
there exists a probability measure #(·× ·) on Rn×S such that the transition probability
p(t; x; i; dy × {j}) of y(t) converges weakly to #(dy × {j}) as t → ∞ for every
(x; i)∈Rn × S. Eq. (2.1) is said to be asymptotically stable in distribution if y(t) is
asymptotically stable in distribution.

Obviously the asymptotic stability in distribution of y(t) implies the existence of a
unique invariant probability measure for y(t).

3. Asymptotic stability in distribution

In this section, we will establish some suLcient criteria on the asymptotic stability
in distribution for the solution process y(t)=(X (t); r(t)) of Eq. (2.1). To highlight the
initial values, we let ri(t) be the Markov chain starting from state i∈ S at t = 0 and
denote by X x; i(t) the solution of Eq. (2.1) with initial conditions X (0) = x∈Rn and
r(0) = i.

De�nition 3.1. Eq. (2.1) is said to have property (P1) if for any (x; i)∈Rn × S and
any $¿ 0, there exists a constant R¿ 0 such that

P{|X x; i(t)|¿R}¡$ ∀t¿ 0: (3.1)

Eq. (2.1) is said to have property (P2) if for any $¿ 0 and any compact subset K of
Rn, there exists a T = T ($; K)¿ 0 such that

P{|X x; i(t)− X y; i(t)|¡$}¿ 1− $ ∀t¿T (3.2)

whenever (x; y; i)∈K × K × S.
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We observe that property (P1) guarantees that for any (x; i)∈Rn × S, the family of
transition probabilities {p(t; x; i; dy×{j}): t¿ 0} is tight. That is, for any $¿ 0 there
is a compact subset K = K($; x; i) of Rn such that

P(t; x; i; K × S)¿ 1− $ ∀t¿ 0: (3.3)

We can now state our main result.

Theorem 3.1. Let (H) hold. If Eq. (2.1) has properties (P1) and (P2), then Eq. (2.1)
is asymptotically stable in distribution.

To prove this theorem we need to introduce more notations. Let P(Rn × S) denote
all probability measures on Rn×S. For P1; P2 ∈P(Rn×S) deKne metric dL as follows:

dL(P1; P2) = sup
f∈L

∣∣∣∣∣
N∑
i=1

∫
Rn

f(x; i)P1(dx; i)−
N∑
i=1

∫
Rn

f(x; i)P2(dx; i)

∣∣∣∣∣ (3.4)

and

L= {f :Rn × S → R : |f(x; i)− f(y; j)|6 |x − y|+ |i − j|
and |f(·; ·)|6 1}: (3.5)

Let us now present three lemmas.

Lemma 3.1. Under (H), for every p¿ 0 and any compact subset K of Rn,

sup
(x; i)∈K×S

E
[

sup
06s6t

|X x; i(s)|p
]
¡∞ ∀t¿ 0: (3.6)

For the proof of this lemma please see Mao (1999).

Lemma 3.2. Let (H) hold and Eq. (2.1) have property (P2). Then, for any compact
subset K of Rn,

lim
t→∞dL(p(t; x; i; · × ·); p(t; y; j; · × ·)) = 0 (3.7)

uniformly in x; y∈K and i; j∈ S.

Proof. For any pair of i; j∈ S, deKne the stopping time

*ij = inf{t¿ 0: ri(t) = rj(t)}: (3.8)

Recall that ri(t) is the Markov chain starting from state i∈ S at t = 0 and due to the
ergodicity of the Markov chain, *ij ¡∞ a.s. (cf. Anderson, 1991). So, for any $¿ 0,
there exists a positive number T such that

P{*ij6T}¿ 1− $
8

∀i; j∈ S: (3.9)



282 C. Yuan, X. Mao / Stochastic Processes and their Applications 103 (2003) 277–291

For such T , by Lemma 3.1, there is a suLciently large R¿ 0 for

P(x; i)¿ 1− $
16

∀(x; i)∈K × S; (3.10)

where x; i = {|X x; i(t)|6R ∀t ∈ [0; T ]}.
Now, Kx any x; y∈K and i; j∈ S. Let IG denote the indicator function for set G and

set 1 = x; i ∩ j;y. For any f∈ L and t¿T , compute

|Ef(X x; i(t); ri(t))− Ef(X y;j(t); rj(t))|
6 2P{*ij ¿T}+ E(I{*ij6T}|f(X x; i(t); ri(t))− f(X y;j(t); rj(t))|)

6
$
4
+ E[I{*ij6T}E(|f(X x; i(t); ri(t))− f(X y;j(t); rj(t))| | F*ij)]

6
$
4
+E[I{*ij6T}E|f(X u;k(t− *ij); rk(t− *ij))−f(X v;k(t− *ij); rk(t− *ij))|]

6
$
4
+ E[I{*ij6T}E(2 ∧ |X u;k(t − *ij)− X v;k(t − *ij)|)]

6
$
4
+ 2P( − 1) + E[I1∩{*ij6T}E(2 ∧ |X u;k(t − *ij)− X v;k(t − *ij)|)];

(3.11)

where u = X x; i(*ij), v = X y;j(*ij) and k = ri(*ij) = rj(*ij). Note that given !∈1 ∩
{*ij6T}, |u| ∨ |v|6R. So, by property (P2), there exists a constant T1 such that

E(2 ∧ |X u;k(t − *ij)− X v;k(t − *ij)|)¡ $
2

∀t¿T + T1: (3.12)

It therefore follows from (3.10)–(3.12) that

|Ef(X x; i(t); ri(t))− Ef(X y;j(t); rj(t))|6 $
4
+

$
4
+

$
2
= $ ∀t¿T + T1:

Since f, etc. are arbitrary, we must have that

sup
f∈L

|Ef(X x; i(t); ri(t))− Ef(X y;j(t); rj(t))|6 $ ∀t¿T + T1;

namely,

dL(p(t; x; i; · × ·); p(t; y; j; · × ·))6 $ ∀t¿T + T1

for all x; y∈K and i; j∈ S. The proof is complete.

Lemma 3.3. Let (H) hold. If Eq. (2.1) has properties (P1) and (P2), then for any
(x; i)∈Rn × S, {p(t; x; i; · × ·): t¿ 0} is Cauchy in the space P(Rn × S) with
metric dL.

Proof. Fix any (x; i)∈Rn × S. We need to show that for any $¿ 0, there is a T ¿ 0
such that

dL(p(t + s; x; i; · × ·); p(t; x; i; · × ·))6 $ ∀t¿T; s¿ 0:
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This is equivalent to

sup
f∈L

|Ef(X x; i(t + s); ri(t + s))− Ef(X x; i(t); ri(t))|6 $ ∀t¿T; s¿ 0: (3.13)

For any f∈ L and t; s¿ 0, compute

|Ef(X x; i(t + s); ri(t + s))− Ef(X x; i(t); ri(t))|
= |E[E(f(X x; i(t + s); ri(t + s))|Fs)]− Ef(X x; i(t); ri(t))|

=

∣∣∣∣∣
N∑
l=1

∫
Rn

Ef(X z;l(t); rl(t))p(s; x; i; dz × {l})− Ef(X y;j(t); ri(t))

∣∣∣∣∣
6

N∑
l=1

∫
Rn

|Ef(X z;l(t); rl(t))− Ef(X x; i(t); ri(t))|p(s; x; i; dz × {l})

6 2P(s; x; i; PBR × S)

+
N∑
l=1

∫
BR

|Ef(X z;l(t); rl(t))− Ef(X x; i(t); ri(t))|p(s; x; i; dz × {l}): (3.14)

where BR = {x∈Rn: |x|6R} and PBR =Rn − BR. By property (P1) (or (3.3)), there is
a positive number R suLciently large for

P(s; x; i; PBR × S)¡
$
4

∀s¿ 0: (3.15)

On the other hand, by Lemma 3.2, there is a T ¿ 0 such that

sup
f∈L

|Ef(X z;l(t); rl(t))− Ef(X x; i(t); ri(t))|¡ $
2

∀t¿T (3.16)

whenever (z; l)∈BR × S. Substituting (3.15) and (3.16) into (3.14) yields

|Ef(X x; i(t + s); ri(t + s))− Ef(X x; i(t); ri(t))|¡$ ∀t¿T; s¿ 0:

Since f is arbitrary, the desired inequality (3.13) must hold.

We can now easily prove our main result Theorem 3.1.

Proof of Theorem 3.1. By deKnition, we need to show that there exists a probability
measure #(·×·)∈P(Rn×S) such that for any (x; i)∈Rn×S, the transition probabilities
{p(t; x; i; ·×·): t¿ 0} converge weakly to #(·×·). Recalling the well-known fact that the
weak convergence of probability measures is a metric concept (cf. Ikeda and Watanabe,
1981, Proposition 2.5), we therefore need to show that for any (x; i)∈Rn × S,

lim
t→∞dL(p(t; x; i; · × ·); #(· × ·)) = 0: (3.17)

By Lemma 3.3, {p(t; 0; 1; · × ·): t¿ 0} is Cauchy in the space P(Rn × S) with metric
dL. So there is a unique #(· × ·)∈P(Rn × S) such that

lim
t→∞dL(p(t; 0; 1; · × ·); #(· × ·)) = 0:
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Now, for any (x; i)∈Rn × S, by Lemma 3.2,

lim
t→∞dL(p(t; x; i; · × ·); #(· × ·))

6 lim
t→∞ [dL(p(t; 0; 1; · × ·); #(· × ·)) + dL(p(t; x; i; · × ·); p(t; 0; 1; · × ·))

= 0

as required.

4. Su'cient criteria for properties (P1) and (P2)

Theorem 3.1 depends on properties (P1) and (P2). It is therefore necessary to es-
tablish suLcient criteria for these properties so that Theorem 3.1 is applicable. On
the other hand, property (P1) is concerned with boundedness while property (P2) is
associated with uniformly asymptotic stability. The study on both of them has its own
right. The importance of this section is therefore clear.
We shall need two more notations. Let K denote the family of nondecreasing func-

tions 2 :R+ → R+ such that 2(0)=0 while K∞ denote the family of functions 2∈K
such that 2(u) → ∞ as u → ∞.
The following lemma gives a criterion for property (P1).

Lemma 4.1. Assume that there exist functions V ∈C2(Rn × S; R+), 2∈K∞ and
positive numbers * and 31 such that

2(|x|)6V (x; i) (4.1)

and

LV (x; i)6− 31V (x; i) + * (4.2)

for all (x; i)∈Rn × S. Then Eq. (2.1) has property (P1).

Proof. Fix any (x; i)∈Rn × S and write X x; i(t) = X (t). Let k be a positive integer.
DeKne the stopping time

4k = inf{t ¿ 0: |X (t)|¿ k}:
Clearly, 4k → ∞ almost surely as k → ∞. Let tk=4k∧t for any t¿ 0. The generalized
Itô formula (i.e. Lemma 2.1) shows that

E[e31tk V (X (tk); ri(tk))] = V (x; i) + E
∫ tk

0
e31sLV (X (s); ri(s)) ds

+ 31E
∫ tk

0
e31sV (X (s); ri(s)) ds:

By conditions (4.1) and (4.2),

E[e31tk V (X (tk); ri(tk))]6V (x; i) + *
∫ t

0
e31s ds= V (x; i) +

*
31

[e31t − 1]:
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Letting k → ∞ gives

EV (X (t); ri(t))6
1
c1

(
*
31

+ V (x; i)
)

: (4.3)

This, together with (4.1), yields

E2(|X (t)|)6C ∀t¿ 0;

where C denotes the right-hand side term of (4.3). Therefore

P{|X (t)|¿R}6 E2(|X (t)|)
R

6
C
R

∀t¿ 0:

Now for any $¿ 0, choosing R suLciently large for C=R¡$, we get the result.

In what follows we shall establish a criterion for property (P2). Clearly, we need to
consider the di#erence between two solutions of Eq. (2.1) starting from di#erent initial
values, namely

X x; i(t)− X y; i(t) = x − y +
∫ t

0
[f(X x; i(s); ri(s))− f(X y; i; ri(s))] ds

+
∫ t

0
[g(X x; i(s); ri(s))− g(X y; i; ri(s))] dB(s): (4.4)

For a given function U ∈C2(Rn×S; R+), we deKne an operator LU :Rn×Rn×S → R
associated with Eq. (4.4) by

LU (x; y; i) =
N∑

j=1

�ijU (x − y; j) + Ux(x − y; i)[f(x; i)− f(y; i)]

+
1
2
trace([g(x; i)− g(y; i)]TUxx(x − y; i)[g(x; i)− g(y; i)]): (4.5)

Please note the di#erence between this operator and the other one LV deKned by (2.2).

Lemma 4.2. If there exist functions U ∈C2(Rn × S; R+), 21 ∈K∞ and 22 ∈K such
that

U (0; i) = 0 ∀i∈ S; (4.6)

21(|x|)6U (x; i) ∀(x; i)∈Rn × S; (4.7)

LU (x; y; i)6− 22(|x − y|) ∀(x; y; i)∈Rn × Rn × S; (4.8)

then Eq. (2.1) has property (P2).
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Proof. For any $∈ (0; 1), by the continuity of U and (4.6), we can choose 8∈ (0; $)
suLciently small for

sup|x|68; i∈S U (x; i)

21($)
¡

$
2
: (4.9)

Let K be any compact subset of Rn and Kx any x; y∈K and i∈ S. DeKne the stopping
times

 8 = inf{t¿ 0: |X x; i(t)− X y; i(t)|6 8}
and

 * = inf{t¿ 0: |X x; i(t)− X y; i(t)|¿ *};
where *¿8. Let t* =  * ∧ t. By the generalized Itô formula and (4.7), we can derive
that for any t ¿ 0,

21(*)P{ *6 t}6 EU (X x; i(t*)− X y; i(t*); ri(tk))

= U (x − y; i) + E
∫ t*

0
LU (X x; i(s); X y; i(s); ri(s)) ds

6U (x − y; i):

Consequently,

P{ *6 t}6 U (x − y; i)
21(*)

:

Noting that U (x − y; i) is bounded when (x; y; i)∈K × K × S, this implies that there
exists a * = *(K; $)¿ 0 such that

P{ * ¡∞}6 $
4
: (4.10)

Fix the * and let t8 =  8 ∧  * ∧ t. By the generalized Itô formula and (4.8), we can
derive that for any t ¿ 0,

06 EU (X x; i(t8)− X y; i(t8); ri(t8))

= U (x − y; i) + E
∫ t8

0
LU (X x; i(s); X y; i(s); ri(s)) ds

6U (x − y; i)− 22(8)E( 8 ∧ T* ∧ t):

Consequently,

tP{ 8 ∧  *¿ t}6E( 8 ∧  * ∧ t)6
U (x − y; i)

22(8)
:

Therefore, there exists a constant T = T (K; $)¿ 0 such that

P{ 8 ∧  *6T}¿ 1− $
4
:
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By (4.10), we have

1− $
4
¡P{ 8 ∧  *6T}6P{ 86T}+ P{ * ¡∞}6P{ 86T}+ $

4
;

which yields

P{ 86T}¿ 1− $
2
: (4.11)

Now, deKne stopping times

� = inf{t¿  8 ∧ T : |X x; i(t)− X y; i(t)|¿ $}:
Let t ¿T and compute

P({ 86T} ∩ {�6 t})21($)

6EI{ 86T;�6t}U (X x; i(� ∧ t)− X y; i(� ∧ t); ri(� ∧ t))

6EI{ 86T}U (X x; i( 8 ∧ t)− X y; i( 8 ∧ t); ri( 8 ∧ t))

6EI{ 86T}U (X x; i( 8)− X y; i( 8); ri( 8))

6P{ 86T} sup
|x|68; i∈S

U (8; i):

This, together with (4.9), yields

P({ 86T} ∩ {�6 t})¡ $
2
: (4.12)

By (4.11) and (4.12), we obtain

P{�6 t}6P({ 86T} ∩ {�6 t}) + P{ 8 ¿T}¡$:

Letting t → ∞ we have

P{�¡∞}6 $: (4.13)

This means that for any (x; y; i)∈K × K × S; we must have

P{|X x; i(t)− X y; i(t)|¡$}¿ 1− $ ∀t¿T

as required. The proof is therefore complete.

5. Criterion in terms of M-matrices

To make our theory more applicable, let us now use the results obtained previously
to establish a new criterion in terms of M-matrices, which can be veriKed easily in
applications. For the convenience of the reader, let us cite some useful results on
M-matrices. For more detailed information please see Berman and Plemmons (1994).
We will need a few more notations. If B is a vector or matrix, by B�0 we mean all
elements of B are positive. If B1 and B2 are vectors or matrices with same dimensions
we write B1�B2 if and only if B1−B2�0. Moreover, we also adopt here the traditional
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notation by letting

ZN×N = {A= (aij)N×N : aij6 0; i �= j}:

De�nition 5.1. A square matrix A = (aij)N×N is called a nonsingular M-matrix if A
can be expressed in the form A = sI − B with s¿4(B) while all the elements of B
are nonnegative, where I is the identity matrix and 4(B) the spectral radius of B.

It is easy to see that a nonsingular M-matrix A has nonpositive o#-diagonal and
positive diagonal entries, that is

aii ¿ 0 while aij6 0 i �= j:

In particular, A∈ZN×N . There are many conditions which are equivalent to the state-
ment that A is a nonsingular M-matrix and we now cite some of them for the use of
this paper.

Lemma 5.1. If A∈ZN×N , then the following statements are equivalent:

(1) A is a nonsingular M-matrix.
(2) A is semipositive; that is, there exists x�0 in RN such that Ax�0.
(3) A−1 exists and its elements are all nonnegative.
(4) All the leading principal minors of A are positive; that is∣∣∣∣∣∣∣∣∣

a11 · · · a1k

...
...

ak1 · · · akk

∣∣∣∣∣∣∣∣∣
¿ 0 for every k = 1; 2; : : : ; N:

The following result gives a new criterion on asymptotic stability in distribution
where the conditions are described in terms of an M-matrix.

Theorem 5.1. Let (H) hold. Assume that for all x; y∈Rn and i∈ S,

xTf(x; i)6 *i|x|2 + 8; (5.1)

(x − y)T(f(x; i)− f(y; i))6 *i|x − y|2; (5.2)

|g(x; i)|26 =i|x|2 + 8; (5.3)

|g(x; i)− g(y; i)|26 =i|x − y|2; (5.4)

where 8, *i and =i are constants. If

A := −diag(2*1 + =1; : : : ; 2*N + =N )− � (5.5)

is an M-matrix, then Eq. (2.1) is asymptotically stable in distribution.
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Proof. By Lemma 5.1 there is a vector q̃= (q1; : : : ; qN )T�0 such that

3̃= (31; : : : ; 3N )T := Aq̃�0:

Set 3=min16i6N 3i ¿ 0 and q=max16i6N qi ¿ 0. DeKne functions V;U :Rn×S → R+

by

V (x; i) = U (x; i) = qi|x|2:
By (5.1)–(5.4) we compute the operator LV from Rn × S to R as follows:

LV (x; i) = 2qixTf(x; i) + qi|g(x; i)|2 +
N∑

j=1

�ijqj|x|2

6

(
2*iqi + =iqi +

N∑
i=1

�ijqj

)
|x|2 + 3qi8

= −3i|x|2 + 3qi8

6−3|x|2 + 3q8:

Also, compute the operator LU from Rn × Rn × S to R:

LU (x; y; i) = 2qi(x − y)T(f(x; i)− f(y; i) + qi|g(x; i)− g(y; i)|2

+
N∑

j=1

�ijqj|x − y|2

6

(
2*iqi + =iqi +

N∑
i=1

�ijqj

)
|x − y|2

6−3|x − y|2:
By Lemmas 4.1 and 4.2, Eq. (2.1) has properties (P1) and (P2) so the conclusion
follows from Theorem 3.1.

Let us emphasize that to apply Theorem 5.1 all we need to do is to verify the
matrix A deKned by (5.5) is an M-matrix and this can be done very easily using the
theory presented in Berman and Plemmons (1994), e.g. Lemma 5.1. We now discuss
an example to illustrate this new technique of M-matrices in the study of stochastic
stability.

Example 5.1. Let B(t) be a scalar Brownian motion. Let 8 and � be constants. Consider
the Ornstein–Uhlenbeck process

dX (t) = 8X (t) dt + � dB(t); t¿ 0: (5.6)
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Given initial value X (0) = x0 ∈Rn, it has the unique solution

x(t) = e8tx0 + �
∫ t

0
e8(t−s) dB(s): (5.7)

It is easy to observe that when 8¡ 0, the distribution of the solution X (t) converges
to the normal distribution N(0; �2=2|8|) as t → ∞ for arbitrary x0, but when 8¿ 0,
the distribution will not converge. In other words, Eq. (5.6) is asymptotically stable in
distribution if 8¡ 0 but it is not if 8¿ 0.

Now let r(t) be a right-continuous Markov chain taking values in S = {1; 2} with
generator

� = (�ij)2×2 =

(−4 4

� −�

)
;

where �¿ 0. Assume that B(t) and r(t) are independent. Consider a one-dimensional
stochastic di#erential equation with Markovian switching

dX (t) = 8(r(t))X (t) dt + � dB(t) (5.8)

on t¿ 0, where � is a constant, 8(1)=1 and 8(2)=− 1
2 . This system can be regarded

as the result of two equations

dX (t) = X (t) dt + � dB(t) (5.9)

and

dX (t) =− 1
2X (t) dt + � dB(t) (5.10)

switching from one to the other according to the law of the Markov chain. From the
property of the Ornstein–Uhlenbeck process (5.6) we observe that Eq. (5.9) is not
asymptotically stable in distribution through Eq. (5.10). However, we shall see that
due to the Markovian switching the overall system (5.8) will be asymptotically stable
in distribution. In fact, with obvious deKnitions of f and g, it is easy to see conditions
(5.1)–(5.4) hold with

*1 = 1; *2 =− 1
2 ; =1 = =2 = 0; 8= �2:

So the matrix deKned by (5.5) becomes

A=−diag(2;−1)− � =

(
2 −4

−� 1 + �

)
:

Since �¿ 0, this is an M-matrix if and only if

2(1 + �)− 4�¿ 0; namely �¡ 1:

By Theorem 5.1, we can therefore conclude that Eq. (5.8) is asymptotically stable in
distribution if �∈ (0; 1).
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