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Abstract
In this paper we stochastically perturb the delay Lotka—\Volterra model
i(1) =diag(x1(1), ..., xa(®)[A(x(t) = %) + B(x(t — 1) — ¥)]
into the stochastic delay differential equation (SDDE)
dx(r) =diag(x1(t), ..., x, ) {[A(x(®) = X) + B(x(t — 1) — X)]dt + o (x(t) — X) dw(1)}.

The main aim is to reveal the effects of environmental noise on the delay Lotka—\Volterra model. Our
results can essentially be divided into two categories:

(i) If the delay Lotka—\Volterra model already has some nice properties, e.g., nonexplosion, persis-
tence, and asymptotic stability, then the SDDE will preserve these nice properties provided the
noise is sufficiently small.

(i) When the delay Lotka—\Volterra model does not have some desired properties, e.g., nonexplosion
and boundedness, the noise might make the SDDE achieve these desired properties.
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1. Introduction

The delay differential equation
dx(t)
dt

has been used to model the population growth of certain species and is known as the delay
Lotka—Volterra model or the delay logistic equation. The delay Lotka—Volterra model for
n interacting species is described by thdimensional delay differential equation

dx(t)
dt

=x(O)[pu+ax(®) +8x(t —1)] (1.1)

=diag(x1(1), ..., x,(1))[b + Ax (1) + Bx(t — 1)], 1.2)
where
x=(xl’~~',xn)T, b=(bl’~~',bn)T, A= (aij)nxn, B=(bij)nxn'

There is an extensive literature concerned with the dynamics of this delay model and we
here only mention Ahmad and Rao [1], Bereketoglu and Gyori [2], Freedman and Ruan [3],
He and Gopalsamy [9], Kuang and Smith [12], Teng and Yu [20] among many others.
In particular, the books by Gopalsamy [8], Kolmanovskii and Myshkis [10] as well as
Kuang [11] are good references in this area.

Assume that Eq. (1.2) has an equilibrium state (x1, ..., x,)? in the positive cone
Rt ={xeR" x; >0, 1<i <n}. Thatis,

b+ (A+ B)x=0.
So Eq. (1.2) can be written as

dx(t)
dt

On the other hand, population systems are often subject to environmental noise (see,
e.g., [4-6]). It is therefore useful to reveal how the noise affects the delay population
systems. It has been well known in the control theory that noise cannot only have a desta-
bilising effect but can also have a stabilising effect (see, e.g., Mao [16]). It has also been
revealed recently by Mao, Marion, and Renshaw [19] that the environmental noise can
suppress a potential population explosion. These indicate clearly that different structures
of environmental noise may have different effects on the population systems. In this paper
we consider the simple situation of the parameter perturbation. Recall that the parameter
b; represents the intrinsic growth rate of specids practice we usually estimate it by an
average value plus an error term. In general, the error term follows a normal distribution
(by the well-known central limit theorem) and is sometimes dependent on how much the

=diag(x1(t), ..., x,())[A(x (1) — %) + B(x(t — 1) — X)]. (1.3)
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current population sizes differ from the equilibrium state. In other words, we can replace
the rateb; by an average value plus a random fluctuation term

n
bi+ Y _0ij(xj — X)),
j=1
whereo;;’s are constants and(z) is a white noise, namelw(z) is a Brownian motion
defined on a complete probability spaee, F, {F;};>o0, P) with a filtration {F;},>0 satis-
fying the usual conditions (i.e., it is right continuous and increasing whileontains all
P-null sets). As a result, Eqg. (1.2) becomes a stochastic differential delay equation (SDDE)

dx (1) = diag(x1(1), ..., x, (1)) ([A(x (1) — X) + B(x(t — 1) — X)] dt
—l—a(x(t) —)E) dw(t)), (1.4)

whereo = (0yj).xn. FOr more biological motivation on this type of modelling in popula-
tion dynamics we refer the reader to Gard [4—6].

Since Eq. (1.2) describes stochastic population dynamics, it is critical to find out
whether or not the solution

will remain positive or never become negative,
will not explode to infinity in a finite time,

will be persistent (i.e., never become extinct),
will tend to the equilibrium state,

will be bounded ultimately.

In this paper we will discuss these problems one by one. Our results can essentially be
divided into two categories:

(i) Ifthe delay Lotka—\Volterra model already has some nice properties, e.g., nonexplosion,
persistence, and asymptotic stability, then the SDDE will preserve these nice properties
provided the noise is sufficiently small.

(i) When the delay Lotka—Volterra model does not have some desired properties, e.g.,
nonexplosion and boundedness, the noise might make the SDDE achieve these desired
properties.

In particular, the results in category (ii) are surprising in the sense they reveal that the noise
will not only suppress a potential population explosion in the delay Lotka—\Volterra model
but will also make the population to be stochastically ultimately bounded.

We should highlight the nice work of Gard [4-6] in stochastic population dynamics,
although they have already been referred above. The reader can find more biological mo-
tivation there. In particular, there are some examples of SDE multi-species Lotka—\olterra
models, e.g., an example of a stochastic Lotka—\Volterra food chain [6, Example 6.4,
p. 180], and we will return to this example later for further discussion. Gard [6] also in-
vestigated the stochastically asymptotic stability of the equilibrium and the same type of
Lyapunov functions used there is used in our present paper. Of course, Goh [7] was one of
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the first authors to introduce this type of Lyapunov function in relation to Lotka—Volterra
models.

We should also mention that we only consider the stochastic perturbation on the system
parameter vectads in this paper. It is interesting to know what would happen if stochastic
perturbation is added onto the system parameter mattieesl B but we will report these
results elsewhere.

2. Global positive solutions

Throughout this paper, we |&} denote the positive cone &, namely
Rff_:{xeR”: x; >0, 1<i<n},
while let R”. denote its closure, i.e.,
Iéﬁ_:{xeR": x; >0, 1<i<n}.

It is useful to emphasise that the boundary is not included in the definitiatl; of_et
t > 0 and denote byC([—7,0]; R"}) the family of continuous functions frorfi-z, 0]
to R. If A is a vector or matrix, its transpose is denoted AY. If A is a matrix,

its trace norm is denoted byi| = \/tracg AT A) whilst its operator norm is denoted by
|A|l =sup|Ax|: |x| = 1}. For a symmetria x n matrix A, largest and smallest eigenval-
ues are denoted bymax(A) andimin(A), respectively.

In this paper we consider the SDDE (1.4) for thenteracting species. As thi¢h state
x;(¢t) of Eq. (1.4) is the size of thé&th species in the system, it should be nonnegative.
Moreover, in order for an SDDE to have a unique global (i.e., no explosion in a finite time)
solution for any given initial data, the coefficients of the equation are generally required to
satisfy the linear growth condition and local Lipschitz condition (cf. Mao [14,17]). How-
ever, the coefficients of Eq. (1.4) do not satisfy the linear growth condition, though they
are locally Lipschitz continuous, so the solution of Eq. (1.4) may explode at a finite time.
It is therefore useful to establish some conditions under which the solution of Eq. (1.4) is
not only positive but will also not explode to infinite at any finite time.

Theorem 2.1. Assume that there are positive numbers. .., ¢, andé such that
1. - - 1. -
xmax(E[CA+ATC+UTCX0]+@CBBTC+91> <0, (2.1)
whereC = diag(c1, ..., cp), X =diagX1, ..., X,), and is then x n identity matrix. Then
for any given initial datafx(¢): —7 <t <0} € C([—1,0]; R'}), there is a unique solution
x(¢) to Eq.(1.4)ont > —7 and the solution will remain ik, with probability 1, namely

x(t) € R} forall t > —7 almost surely.

Proof. Since the coefficients of the SDDE (1.4) are locally Lipschitz continuous, for any
given initial data{x(r): —t <t <0} € C([—-7,0]; R}) there is a unique maximal local
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solutionx(¢) ont € [—t, t.), Wherer, is the explosion time (cf. Mao [15, p. 95]). To show
this solution is global, we need to show that= oo a.s. Letkg > 0 be sufficiently large for

1 .
— < min_|x(0)] < max_|x(®)| < ko.
ko —t<1<0 —1<r<0

For each integek > ko, define the stopping time
7 =inf{r €0, 7.): x;(t) & (1/k, k) for somei =1,...,n},

where throughout this paper we setint co (as usuall denotes the empty set). Clearly,
;¢ IS increasing as — 00. Setty, = limy_ %, Whencer,, < 7. a.s. If we can show
that 7, = o0 a.s., thenr, = oo a.s. andx(r) € R’} a.s. for allz > 0. In other words, to
complete the proof, it is sufficient to show thgt = oo a.s. For this purpose, let us define
aC2-functionV : R — Ry by

V=Y e [’“_ . |og<¥)] (2.2)
i=1 i i
The nonnegativity of this function can be seen from that
u—1-logu) >0 Vu=>0.

Letk > ko andT > 0 be arbitrary. For & t <ty A T, itis not difficult to show by the Itd’s
formula that

AV (x(t)) =LV (x(t), x(t — 1)) di + (x(t) — %) Co (x(1) — %) dw(0), (2.3)
whereLV : R} x R, — R is defined by
LVQJO:%@—XVKM+wﬂé+vTCﬁﬂ@—i}+@—ff@3@—i}
(2.4)
Noting that

_ 1 _ _
(x—iﬂCB@—&)gZgu—xﬂtBBTcu—fy+my—xF
sinced > 0, we have
1,- , - 1 i
LVLny)g(x—iﬂ[§«24+ATC+oTCX6)+ZECBBTC+91}x—i)
—0lx — x> +6ly —x)?
<—Olx — X7+ 0]y — %, (2.5)
where condition (2.1) has been used. Substituting this into (2.3) yields
av (x(0)) < [-6|x(t) — %[>+ 6|x(t — 7) — %[*] dz
+ (x() = %) Co (x(1) — %) dw(®). (2.6)

We can now integrate both sides of (2.6) from Gcton T and then take the expectations
to get
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wAT

V(x(tx AT)) < V(x(0)) + E f [<6]x(t) —%|°+6|x(t —7) —%|*]dr.  (2.7)

Compute
W AT W AT —1
E/|x(t—r)—)€|2dt:E / () — %|%dt
0 -7

W AT

/}x(t)—x| dt+ E / |x(t)—x| dt.
Substituting this into (2.7) gives
V(x(te AT)) ngzv(x(O))+9/ () — 2| dr. (2.8)

Note that for every € {1 < T}, there is some such thaty; (zx, w) equals eithek or 1/k,
and hencé/ (x(tx, w)) is no less than either

min k 1-1lo k or  min {cix; ! —lo !
1<i<n Cidi X g % 1<ian | Y ki g ki) ||

Thatis

V(x(tk, w)) = 1r<nl_i2n{clxl ([f_, -1- Iog(%)} A [% -1+ |og(k;z,~)D }

It then follows from (2.8) that

K > E[Lg<ry(@)V (x(t, »))]

. k k 1 _
> P{t; < T}lglgn{clxl ([x— —-1- Iog(_—)] A [E -1+ Iog(kx,-)])},

where 1., <) is the indicator function ofr; < T}. Lettingk — oo gives

I|m Plu. <T}=
and hence
Plteo <T}=0

SinceT > 0 is arbitrary, we must have
P{too <00} =0,

S0 P{15 = 00} =1 as required. O
It is interesting to observe that condition (2.1) implies

1 - 1 )
kmax<§[CA +ATC]+ @CBBTC +91> <0,
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while this condition guarantees that the delay Lotka—\olterra equation (1.3) will have a
global positive solution. Hence, Theorem 2.1 tells us that under this condition, if the noise
intensity matrixo is sufficiently small for (2.1) to hold, then the stochastically perturbed
system (1.4) of the delay Lotka—Volterra equation (1.3) will remain to have a global pos-
itive solution. In other words, Theorem 2.1 gives a result on the robustness of the global
positive solution.

We also observe from the proof above that condition (2.1) is used to derive (2.5)
from (2.4). But there are several different ways to estimate (2.4) which will lead to dif-
ferent alternative conditions for the global positive solution. For example, we know that

- T = —_ 1 —_ T o — 0 _ T T = -
(x=%) CB(y—%) < %(x—X) C(x—x)+§(y—X) B CB(y —X)
holds for any > 0. So
1 _ _ _ _ _
LV (x,y) < 50 = DT[CA+ATC +0"CXo +071C +0BTCB](x — %)
0 - 0 _
- E(x—i)TBTCB(x—)?)+E(y—i)TBTCB(y—)E). (2.9)
If we assume that
Amax(CA+ATC +0"CXo +671C +6BTCB) <0,
we will then have
6 - 0 _
LV (x,y) S =5 = HTBTCB(x — %)+ SO —0)TBTCB(y —%). (2.10)

From this we can show in the same way as in the proof of Theorem 2.1 that the solution of
Eq. (1.4) is positive and global. In other words, the arguments above give us an alternative
result which we describe as a theorem below.

Theorem 2.2. Assume that there are positive numbers. .., ¢, andé such that
Amax(CA+ATC+0"CXo +671C +0B"CB) <0, (2.11)

whereC and X are the same as defined in Theor@r. Then for any given initial data
{x(t): —t <t <0} e C([—7,0]; RY), there is a unique solution(¢) to Eq. (1.4) on
t > —1 and the solution will remain irR", with probability 1, namelyx(¢) € R’} for all

t > —t almost surely.

We leave the other alternatives to the reader. We observe that both conditions (2.1)
and (2.11) involve all the three matricels B, ando which appear in Eq. (1.4). Both
theorems tell us that if Eq. (1.3) (without noise) has a global positive solution, then its
stochastically perturbed system (1.4) will also have a global positive solution as long as
the noise is sufficiently small. The question is: if the noise is not sufficiently small what
would happen? In general, one may think that the SDDE (1.4) may no longer have a global
positive solution. However, we shall now establish a surprising result on the global positive
solution, where a very simple condition will be imposed on the noise intensity matrix
but no condition on either matrix or B at all.
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Theorem 2.3. Assume that the noise intensity matsix= (o;;),x, has the property that
0;; >0 forl<i<n while o;; >0 fori#j, 1<i,j<n. (2.12)

Then for any given initial datdx(r): —t <t <0} € C([~7,0]; R}), there is a unique
solutionx(¢) to Eq.(1.4)ont > —7 and the solution will remain iR’} with probability 1,
namelyx(r) € R’} forall t > —7 almost surely.

Before the proof of this theorem, let us comment on its significant features. First of all,
this theorem shows that if Eq. (1.3) (without noise) has a global positive solution, then a
large noise may not change this property. Next, this theorem shows that although Eg. (1.3)
may not have a global positive solution (e.g., its solution may explode to infinity at a finite
time), the corresponding SDDE (1.4) will have a global positive solution. For example,
consider the one-dimensional differential delay equation

dx(t)

P =x(t)[2(x(t) — 1) - (x(t —7)— l)]

If the initial functionx (¢) is increasing oi—t, 0] andx(—t) > 1, it is then not difficult to
show that the corresponding solution will explode to infinity at a finite time. However, by
Theorem 2.3, the SDDE

dx(t) =x®)([2(x(t) = 1) = (x(t — 1) — 1)]dt + o (x () — 1) dw(?))

will have a unique global positive solution for any initial datad{—z, 0]; (0, c0)), where

o > 0. In other words, this theorem reveals an important fact that the noise can suppress
a potential population explosion in a delay population system. This is a generalised result
of [19].

Proof of Theorem 2.3. We use the same notation as in the proof of Theorem 2.1 except
the C2-functionV : R". — R, is now defined by

n

V(x)=Y [xi —1—05log(x;)]. (2.13)

i=1

Letk > ko andT > O be arbitrary. For & ¢ < 7 A T, we can show by the Ité’s formula
that

dV(x(t)) = LV(x(t), x(t — r)) dr + 0.5y (x(t))a(x(t) - )E) dw(t), (2.14)
wherey (x) = (/x1—1,...,/x, — D andLV : R} x R} — R is defined by

LV (x,y) =05¢ (0)[A(x — 3) + B(y — )] + 050 (x — ©)|°

n n 2
—0.1252¢x—i<zaij(xj —;zj)> . (2.15)

i=1 j=1

Noting that|y (x)| < /n(Jx| + 1), we compute



304 X. Mao et al. / J. Math. Anal. Appl. 304 (2005) 296—-320

0.5y ()[A(x — %) + B(y — ©)] + 0.5|0 (x — )|
<05y/n(lx| + D[IAll(1x] + 1£]) + 1B (1y] + |%])] + 050 |?]x — %[
<05y/n(lx| + D[ All(1x| + 1£]) + 1B]lI%]]
+0.25| Bl|[n(1x] + 1) + |y ] + o I12(1x * + |51%). (2.16)
Moreover,

n n 2
Z«/E‘(Z%‘(xj —ij)>
i=1 j=1
n n 2 n n n
=Zﬁ{(20ijxj> +(Zaijij)(zaijij_zzaijxj)}
i=1 j=1 j=1 j=1 j=1
n n n n n
2Zoiixiz's-i-Zx/)C_i(Zaijxf)(ZG’VEJ_ZZU"VCJ')' (217)
i=1 i=1 i=1 =1 =1

Substituting (2.16) and (2.17) into (2.15) yields
LV (x,y) <k(x) — 0.25) B[/ (Jx|* — |y[%), (2.18)
where

K (x) =05/n(x| + D[IIAll (x| + 1X]) + I B]|x]]
+0.25) B||[n(Ix] + 1) + x[?] + llo I3(1x[* + 12[%)
— 0.1252 o,-ixiz'S — O.lZSZﬁ(ZO‘,‘jfj) (ZO’,']‘)E]‘ — ZZO‘I‘]‘)C]).
i=1 i=1 j=1 j=1 j=1
It is easy to see that(x) is bounded above, say &, in R’ . Thus
LV (x,y) < K1—0.25] B||(1x> — /).
Inserting this into (2.14) gives
av (x(1)) < [K1—0.251 B (|x()|* = |x(t — 7)|?)] dt
+ 0.5¢ (x (1)) o (x(1) — X) dw(r). (2.19)

We can now integrate both sides of this inequality from Gjto\ T and then take the
expectations to get

AT
EV(x(t AT)) < V(x(0) + K1T — 0.25| B|| E / [lx)]* = |x(t — 7)) dt.
0 (2.20)

It is easy to show that

W AT 0 AT

E / |x(t—r)|2dt</|x(t)|2dt+E / ()| dt.

0 -7 0
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Substituting this into (2.20), we obtain that

0
EV(x(x AT)) < V(x(0)) + K1T + 0.25| B|| / |x(t)|2dt. (2.21)

The remaining of the proof is very similar to those in the proof of Theorem 2.1 and hence
the proof is complete. O

3. Stochastic persistence and confidence interval

From now on we shall denote by(z; &) the unique global positive solution of the
SDDE (1.4) giveniinitial dat§ = {£(r): —t <t < 0} € C([—7, 0]; R}). One of the impor-
tant properties in population dynamics is the persistence which means every species will
never become extinct. The most natural analogue for the stochastic population dynamics
(1.4) is that every species will never become extinct with probability 1. To be precise, let
us give the definition.

Definition 3.1. The SDDE (1.4) is said to be persistent with probability 1 if, for every
initial datag = {£(r): —7 <t <0} € C([—7, 0]; R?}), the solutionx (¢; £) has the property
that

Iirminfx,»(t;g) >0 asforalll<i<n. 3.1
— 00

In the previous section we have shown that either condition (2.1) or (2.11) guarantees
the unique global positive solution. We shall now show that either of them also guarantees
the persistence with probability 1.

Theorem 3.2. Assume that there are positive numbeys. .., ¢, and 6 such that either
(2.1) or (2.11) holds. Then Eq(1.4) is persistent with probabilitl. Moreover, for any
initial data & = {£(r): —7 <t <0} € C([—7, 0]; R}), the solutionk (¢; £) has the property
that

limsupx;(t;£) <oo a.s.foralll<i <n. 3.2)

t—>0o0

To prove this theorem we will need the nonnegative semimartingale convergence theo-
rem (see, e.g., [13, Theorem 7, p. 139]) which we cite as a lemma below.

Lemma 3.3. Let A(¢r) and U(¢) be two continuousr;-adapted increasing processes on
t > 0 with A(0) = U(0) =0 a.s. LetM () be a real-valued continuous local martingale
with M (0) = 0 a.s. Let¢ be a nonnegativeFp-measurable random variable such that
E¢ < 00. Define

Xt)=¢+A@®)-U@®)+M(@) forr>=0.
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Then, ifX (¢) is nonnegative,
{ lim A@®) < oo} C [ lim X() < oo] mi lim U@) < oo] a.s,
t—00 —00 —00
whereB C D a.s. meand (B N D) = 0. In particular, if lim,_.» A(t) < oo a.s., then for
almost allw € £2,

Iim X, w) < o0, im U(f,w) <oo, and —oo< lim M, w) < co.
11— 00 11— 00 —00

Proof of Theorem 3.2. We only prove the theorem under condition (2.1) since it can be
done in the same way under condition (2.11). Fix any initial §adad writex (¢; £) = x(¢)

for simplicity. Using the same notation as in the proof of Theorem 2.1, we derive from (2.6)
that

t
V(x®) < V(£0)+ /[—9|x(s) — x|2 +0]x(s — 1) —x|2] ds + M(1),
0

where
t

M(t)=/(x(s)—)E)Tc_'a(x(s)—i)dw(s) (3.3)
0
is a continuous local martingale wit (0) = 0. It is easy to show that

t 0 !
f|x(s_f)_;y2ds</|g(s)—xyzds+/]x(s)—x]2ds.
0 -7 0

Substituting this into the previous inequality yields
V(x(®)) <t +M@), (3.4)
where¢ = V(£(0)) + f?r |E(s) — ¥|°ds is a positive constant. Sindé(x(r)) > 0,
Xt):=¢+M(@) =0
By Lemma 3.3, lim_, o X () < oo a.s. Hence
limsupV (x(r)) <oo as. (3.5)

—0o0

Recalling the definition of/ (i.e., (2.2)), we obtain that
lim sup[xi_—(t) —-1- Iog(xi_—@>]< oo as

t—00 Xi Xi
forall 1 <i < n. Note that
u—1—logu) —oco ifandonlyif u ] Ooru1 oo.
We must therefore have

0 < liminf x; () < limsupx; () <co as.
11— 00

t—0o0

foreveryi =1,...,n asrequired. O
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Theorem 3.2 shows that, for evaryboth

u; :=|i,rD>Lrlfxi(t) and v; :=limsupx;(r)

—00

are finite and positive random variables. Hence there is a random vafiabl& (w) > 0
such that

%éxi(t)gvi—}—l forallt >T.

On the other hand; () is continuous and positive dr-t, 7], SO

O< min x;(H < max x;(t) <oo.
T

—ISIS —IRIR

Thus, there is a pair of finite and positive random variaBleandv; such that
Plu; <xi(t) <vforallr > -t} =1. (3.6)

This implies that for any € (0, 1), there is a pair of positive constants and 8;, which
might depend 0§ ande, such that

Plaj <xi) < piforallt > -1} >1—e.

This means that the solution of Eq. (1.4) will remain within a compact subse?t ofith
large probability. It is certainly much more useful if bathand g; can be estimated more
precisely. For this purpose we introduce a continuous function

h(u)=u —1—log(u) onu>0.

This function has the properties thiatl) = 0; h(u) is strictly increasing tao asu de-
creases from 1 to 0 or asincreases from 1 tec. Hence for anyw > 0, the equation
h(u) = v has two roots: one 0, 1) and the other i1, co) that are denoted b;y,—l(v)

andh; 1(v), respectively. We also naturally s&t*(0) = 4, %(0) = 1. So bothz;(v) and
h;l(v) are well-defined ow > 0. Also,hfl(v) is decreasing while;l(u) is increasing.
Moreover,

h(h; Y ) =h(h (W) =v onv=0, 3.7
while

ht(hw)) <u < h;Y(hw)) onu > 0. (3.8)
With this notation we can descrilag and8; more precisely.
Theorem 3.4. Assume that there are positive numbeys..., ¢, and 6 such that either

(2.1)or (2.11)holds. Then for any initial dat§ = {£(r): —7 <t <0} € C([—7,0]; R})
and any positive numbere (0, 1), the solution of Eq(1.4) has the property that

P{ai<x,-(t;§')<,3i forall t > —1, 1<i§n}>1—8 (3.9

with

_1|:§0(§) (3.10)

Ol,‘Z)E,‘hl sc,-)?i:| and ﬂi=iihrl|:

90(5)}

Scifi
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where we set

pE)= sup V(W) +9/|s<s)—x| ds,
—7<s<0
if condition(2.1) holds, while

0

0 _
0@ = sup V(E)+ [ (66)-5) BTCB(s0) - D) ds
—1<s<0 2—r

if condition(2.11)holds, in whichV is defined by2.2).

Proof. We only prove the theorem under condition (2.1) since it can be done in the same
way under condition (2.11). Fix any initial daaand writex (¢; &) = x(¢) for simplicity.
By the definitions ofV, h,‘l, h1 and their properties, especially (3.8), we have
14 i
i b U (1= | ETCR T
T

CiXi i

while

Bi 2)?,-}1;1[@] > Xih [ <g,(s)>] >&(s), —t<s<0

CiXi Xi
for every 1< i < n. Define the stopping time
=inf{r > 0: x;(t) ¢ (i, B;) for somei}.

Then for anyr > 0, it follows from (2.6) that

PAL
Ev(x(pm))gv(s(O))+Ef[—eyx(s)—x|2+9|x(s—r>—x|2]ds
0
But
PAL PAL
/|x(s—r)—x| ds < /|.§(s)—x| ds—}—E/ |x(s)—x| ds.
0 0
We hence have
9(E) = EV(x(p AD) = E[Lp<n(@)V (x(p; 0)]. (3.11)

Note that for every € {p < t}, there is someé = i (w) such thaty; (o; w) is equal to either
a; or B If x; (p; w) =,

V(x(p: ) > c,-;zih<ﬁ) - ciiih[hll< v (&) )} _ 9
Xi ECiX; &

while if x; (p) = 8;,

V(x(,o; w)) > cpE,-h(@) = ci)_cih|:h,1<@>j| = @
X; ECi X; &
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That is, we always have

V(x(p;w)) = 28 it we {p <1}
&
Substituting this into (3.11) yields

(&) > %@P{p <1},

That is
P{p <t} <e.

Lettingt — oo producesP{p < oo} < €. Hence
Plp=oco}>1-¢

which means
P{ozi <xi(t;x0) < pB; forallt > —z, 1<i§n} >1-—c¢,

as required. O

4. Asymptotic stability

Property (3.6) shows that almost every sample path of the solution of the SDDE (1.4)
will remain in a compact set. In this section we shall discuss how the sample path may
vary within the compact set in more detail. In particular, we shall investigate whether the
solution will tend to the equilibrium stateor not.

We will need two more new notations.df is a closed subset @&t andx € R", define

d(x; G) =min{|x — y|: y € G},
i.e., the distance between vectornd setG. Denote byR”. the closure ofR” , namely
R} ={xeR" x; >20forall 1<i <n}.

Theorem 4.1. Assume that there are positive numbeys..., ¢, and 6 such that either
(2.1)or (2.11)holds. Then for any initial datg = {£(z): —7 <t <0} € C([—7,0]; RY),
the solution of Eq(1.4) has the property that

t[}ngod(x(t;é),lC)zo as. (4.1)
with

K={xeR: x—%)"H(x-x) =0}, (4.2)
where we set

H=%[C_‘A—FATC_‘—HITC_‘}_(U]—i—%C—‘BBTC_‘—i-GI, (4.3)
if condition(2.1) holds, while

H=CA+ATC+0o"CXo+671C+06B7CB, (4.4)
if condition(2.11)holds.



310 X. Mao et al. / J. Math. Anal. Appl. 304 (2005) 296—-320

This theorem follows from Mao [18, Theorem 2.1]. Although the general result es-
tablished in Mao [18] is for an SDDE with the state spaceRéf it is applicable to the
SDDE (1.4) which has the positive co® as an invariant set shown by Theorem 2.1.
The following useful result on the asymptotic stability follows from Theorem 4.1 directly.

Theorem 4.2. Assume that there are positive numbers. .., ¢, andé such that the sym-
metric matrix H defined by eithe(4.3) or (4.4) is negative-definite. Then for any initial
data& = {£(r): —7 <t <0} e C([—7,0]; R"}), the solution of Eq(1.4) has the property

that

lm x(:6)=5 as (4.5)

Proof. SinceH is negative-definite, the sét defined by (4.2) reduces #6 = {x}. Theo-
rem 4.1 hence shows that

lim d(x(;€),K) = lim |x(;&) —%|=0 as,

t—00 t—00
which is the desired assertion (4.5)0

Most of the results in this paper requiketo be non-positive-definite except the theorem
above. We therefore wonder whether the solution will still tend to the equilibrium state if
H is only non-positive-definite? The following result does not only give a positive answer
but also reveal the important role of noise in stabilisation.

Theorem 4.3. Assume that there are positive numbeys. .., ¢, and 6 such that either
(2.1)or (2.11)holds and, moreover,

Co +oTC is either positive-definite or negative-definite. (4.6)
Then the conclusio(®.5) of Theorem#.2 still holds.

Proof. Once again we only prove the theorem under condition (2.1) since it can be done
in the same way under condition (2.11). Fix any initial datand writex (z; £) = x(¢) for
simplicity. We will use the same notation as in the proofs of Theorems 2.1 and 3.2. By
Lemma 3.3, we obtain from (3.4) that

—00 < tIim M(t) <oco as., (4.7)
— 00

whereM (¢) is defined by (3.3). For any integkr> 1, define the stopping time
e =inf{r > 0: [M@)| > k}.
Clearlyt; 1 oo a.s. and, by (4.7)P(£21) = 1 where

o0
1= U {a): T (w) = oo} (4.8)
k=1
Note that for any > 0,

INTE

E / |(x(s) — %) Co (x(s) — %)|?ds = E|M(t A )| < K2
0



X. Mao et al. / J. Math. Anal. Appl. 304 (2005) 296-320 311

Lettingt — oo and using the well-known Fatou lemma, we obtain
Tk
E/ |(x(s) — %)" Co(x(s) — )|*ds <k?,
0
which yields
Tk
/ |(x(s) = %) Co(x(s) — )|°ds <00 as.
0

Therefore, there is a subs@p of 2 with P(£22) = 1 such that for allv € £27,
% (w)
|(x(s; ) — %) Co (x(s; ) — %) ds <o forallk > 1. (4.9)
0

Now for anyw € 21 N £2;, there is an integek = k(w), by (4.8), such that;(w) = oo;
hence by (4.9),

o0
/ |(x(s; w) — )E)TC_’a(x(s; w) —)E)|2ds < 0.
0

SinceP (21 N £22) =1, we obtain

f|(x(s)—)f)TC_’a(x(s)—)E)’2ds<oo as. (4.10)
0

If Co + o7 C is positive-definite, then
(x(s) — )E)TC_’o(x(s) — )E) = %(x(s) —)E)T(C_’a —i—aTC_’)(x(s) — )E)
> Amin(C_'a +0T6)|x(s) — )E|2 >0,
whence
|(x(s) = %)" € (x(s) = £)|* = [Amin(Co + 0T C) | (s) — %[*.
Substituting this into (4.10) yields
o0
/|x(s)—)2|4ds<oo as. (4.11)
0

Similarly, we can show this holds §o + o7 C is negative-definite. It is straightforward
to show from (4.11) that

liminf |x(r) —%|=0 as. (4.12)
11— o0
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and
t
lim /|x(s)—x|4ds=o as. (4.13)
—00
-t
Noting
t t 1/2
-2 _i4
/|x(s)—x| ds<<1/|x(s)—x| ds) ,
-7 t—T

we see from (4.13) that

t
lim /|x(s)—x\2ds=o as. (4.14)
11— 00
-7

Let us now defing: : (0, co) — (0, co) by
wu) = inf V(x).

XeRY, |x—X|Z>u

By the definition of V (x), namely (2.2), it is clear that(«) | 0 asu | 0. Lete > 0 be
arbitrary and set

5= %B/L(S). (4.15)

Define the stopping time:

t
p= inf{t >0: V(x(1)+0 / lx(s) — %|°ds < 3}.
t—T
It follows from (4.12) and (4.14) thaP{p < oo} = 1. We can therefore find a positive
constantT” sufficiently large for
Plp<T)>1-7. (4.16)
Now, define two stopping times

p, fp<T, . ' .
OlZ{OO, otherwise  ANd B=inflr>a: [x() — %] >},

We then derive from (2.6) that for any> T,

EV(x(BAD)
BAt
< E(V(x(ot A t)) + / [—Q‘x(s) —i!z + 9’x(s —17) —ﬂz] ds). (4.17)
oNt

Let 1; denote the indicator function of sét Noting that
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BAt
E{l{a>7}<V(x(aAt))+ /[—9|x(s)—)E|2+9|x(s—r)—i|2]ds>}

aANt
= E{l=1}V (x()} = E{Lie=1yV (x(B A D)},
we then derive from (4.17) that

E{lia<r)V(x(B AD))

BAt
< E{l{agT}<V(x(a)) + / [—9|x(s) —)E|2+9|x(s — 1) —)E|2]ds>}

< E{l{a@ (V(x(a)) +6 / lx(s) — )E|2ds> }

o—T

<. (4.18)
Noting {8 <t} C {«

() P{p <t}
Lettingt — oo and using (4.15), we have

T} and recalling the definition gi (-), we further obtain

<
< 4.

&
P{p <oo} < >
Hence, by (4.16) and the definition @f
Plao <ocoandB =00} > Pla<T}—P{B<oo}>1—c¢.
But this means that
P{Iimsup|x(t) — x| <s} >1-—c¢.

—>0o0

Sincee > 0 is arbitrary, we must have
P{t[)ngo |x(t) — x| = 0} =1

as required. O

5. Stochastically ultimate boundedness

In the previous two sections we have discussed the asymptotic properties of the
SDDE (1.4) under the condition that the noise is sufficiently small, namely under either
condition (2.1) or (2.11). On the other hand, Theorem 2.3 provides us with the alternative
condition (2.12) for the global positive solutions, where the noise could be large. Itis there-
fore useful to discuss the asymptotic properties of the SDDE (1.4) under this alternative
condition.

Theorem 2.3 shows that under the simple condition (2.12) the solutions of Eq. (1.4)
will remain in the positive coner’} for ever. However, this nonexplosion property in a
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population dynamical system is often not good enough while the property of ultimate
boundedness is more desired. Let us now give the definition of stochastically ultimate
boundedness.

Definition 5.1. The SDDE (1.4) is said to be stochastically ultimately bounded if for any
¢ € (0, 1), there is a positive constaft = H (¢) such that for any initial datéx(¢): —7 <
t <0} e C([—7,0Q]; R?}), the solutionx (¢) of Eq. (1.4) has the property that

limsupP{|x()| <H} >1—¢. (5.1)
[—00

The following theorem reveals another important property: the environmental noise
could make a delay population system become stochastically ultimately bounded.

Theorem 5.2. Let condition(2.12)hold. Then for any € (0, 1), there is a positive constant

K (0) such that for any initial datdx (r): —t <t <0} € C([—7, 0]; R"}), the solutionx (1)
of Eq.(1.4) has the property that

im SUpE |x(0)|” < K (®). (5.2)
—>00
In particular, under conditior(2.12) the SDDEK1.4)is stochastically ultimately bounded.
Proof. Define
Vix) = ix? forx e R}
i=1

By the I1t6’s formula, we have

dV(x(0)) =LV (x(1), x(t — 1)) dt

- (Zex?(t)zau(xj(z) —;,»)) dw(r), (5.3)
i=1 j=1

whereLV : R} x R’} — R is defined by

n

LV(x,y)= Z@x? Z[aij(xj —Xj) +bij(yj — xj)]

i=1 j=1

n n 2
_e(lz_e)Zx?[Zdij(Xj—fj)} .
i=1 j=1

Compute

n n

n n 1
LV(@x.y) <Y 0x) > aij(xj — ) — bij¥;] + ZZ[%gzbijl?G + ;yf]

i=1  j=1 i=1 j=1

n n 2
_ 9(12— 0) leg { <Zaijxj>
j=1

i=1
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n n n
+ (Z(Tij)zj) (ZO‘,']')E]' — ZZO'inj> }
n
Z@x Z aij(xj = X;) = bij¥j] +ZZ 0% + 1yI?

Jj=1 i=1j= 1
6(1—9) n n _ n
— > Z (r”xl + Zo,]x] Zaijxj—ZZGijxj
i=1 j=1 j=1
=F(x)—V(x)—e x>+ |y (5.4)
where
n
F(x)=V(x)+¢° |x|2+29x02au(x1—x1)— iiX +ZZ 6267 x?
i=1j= 1
0(1—0) _
TZ {O'”xl +(ZO',J)C])(ZO‘I‘]‘X]‘—Zzo‘ijxj)}.
i=1 j=1 j=1

Note thatF (x) is bounded above iR" , namely

K1:= sup F(x) < oc.
X€eRY

We therefore have
LV(x,y) < K1 —V(x) —e"[x]?+ [y

Substituting this into (5.3) gives

V(@) <[K1—V(x®) — et x @) + [xt — 0[] dr
(Zex (z)za,, Xj(1) — )dw(t) (5.5)

Once again by the Itd’s formula we have

dle'V(x(®)]=e'[V(x(®)dt +dV (x®))]
< et[Kl — e’!x(l)}z + |x(t — r)|2] dt
e’(Ze)x?(t)Zo,-j(xj(z) —)z,-)> dw(t).
i=1 j=1
We hence derive that

t t
FEV(x(1)) < V(x(0) + K1e' — E/ex+f|x(s)|2ds+E/.es|x(s —0)?ds
0 0
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t -7
=V(x(0) + K1e' — E/es+f|x(s)|2ds +E / es+r|x(s)|2ds
0 —T

0
gV(x(O))+K1e’+/\x(s)|2ds.

This implies immediately that
limSupEV (x(1)) < K1. (5.6)
—00

On the other hand, we have

|x|2 <n _max xiz

<ikn

SO

|x|0 <n9/2 max xig <n0/2V(x).
1<ign

It then follows from (5.6) that

lim SupE |x(t) |‘9 <n??Kq,
11— 00

which yields the required assertion (5.2) by settikigd) = n?/2K1. In particular, let
9 =0.5andK = K(0.5). Then

limsupE (v/|x(1)]) < K.
11— 00

Now, for anye > 0, let H = K?/¢?. Then by Chebyshev’s inequality,

EW/Ix(O])

Pllx(n|>H} < T

Hence

. K
limsupP{|x()| > H} < ——= =e.

1—00 vH

This implies
limsupP{|x()| <H}>1—¢.
11— 00

In other words, the SDDE (1.4) is stochastically ultimately bounded.

The following result shows that the average in time of the second moment of the solu-
tions will be bounded.

Theorem 5.3. Let condition(2.12) hold. Then there is a positive constakit which is
independent of the initial datex (r): —7 <t <0} € C([—7,0]; R}), such that the solution
x(t) of EQ.(1.4) has the property that
t
. 1 2
limsup= | E|x(s)|"ds < K. (5.7)
t—00 tO
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Proof. We use the same notation as in the proof of Theorem 5.2 except Wwe=seH. It
then follows from (5.4) that

LV (x,y) < G(x) —2x2+ |y,
where

n n
G =2xP+Y 050 Z[au(x] — %) — biji;] +ZZ 16b2x,

i=1 j=1 i=1j=1
n n n
0.5 = =
__Zx {U”xl +(ZO‘,‘j}Cj)(ZO’,’ij—Zzo‘ijxj')}.
j:l j:l j:l

Note thatG (x) is bounded inR” , namely
K := sup G(x) < oo.

XeRL

We therefore have
LV(x,y) <K =2+ |y

Substituting this into (5.3) gives

av (x() < [K = 2|x ()| + |x(t — 1)[*] dr
+ (Zo.5x?-5(t) > oij(xj) — ;z,-)) dw(t).
i=1 j=1

It then follows that

t 1

0< V(x(O))+Kt—2E/|x(s)|2ds+E/|x(s—z)\2ds

0 0
0 t
=V(x(0))~|—/|x(s)’2ds+Kt—/E}x(s)‘zds.
_t 0

This implies immediately that

t
I|msup E|x(s)}2ds <K
=00

0
as required. O

6. Stochastic delay L otka—Volterrafood chain

Gard [6, Example 6.2, p. 174] considered the Lotka—\Volterra system of food chain
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xX1(1) = x1.(0)[b1 — a11x1(1) — azax2(1) ],
xX2(1) = x2(1)[—b2 + a21x1(t) — azox2(t) — azax3(1)],
%3(1) = x3(t)[—b3 + azzx2(t) — assxa(t)], (6.1)

wherex1, x2, andxz represent, respectively, the population densities of prey, intermediate
predator, and top predator. In this example,thandb;; are positive constants. Gard [6]
showed that an equilibrium = (X1, X, ¥3)7 exists inR" if

b1 — (a11/a21)b2 — [(a11a22 + a12a21) /az1a32]bz > 0. (6.2)

He also showed that the equilibrium is globally asymptotically stable as long as (6.2) is
satisfied.

Let us now modify this example by taking into account the time delay of interactions
between species. In this case, the system above becomes

x1(1) = x1(1)[b1 — a11x1(t) — azox2(t — 1)],

xX2(1) = x2(1) [ —b2 — azoxa(t) + azix1(t — 7) — azaxa(t — 1)),

X3(1) = x3(t)[—b3 — azaxa(t) + azax2(t — 1)]. (6.3)
That is, in the matrix form,

X (1) = diag(x1(1), x2(t), x3()) [b 4+ Ax(t) + Bx(t — 7)]. (6.4)

where

b1 —a1l 0 0
x()=| —b2 |, A=| 0 —axx 0 |,
—b3 0 0 —as3

0 —ai 0
B=|an O —azs | .
0 asp 0

Under (6.2), the delay equation (6.4) has an equilibritsa (x1, X2, X3)7 in R, the same
as Eq. (6.1). We may therefore rewrite Eq. (6.4) as

(1) = diag(x1(1), x2(t), x3()) [A(x (1) — X) + B(x(t — 1) — X)]. (6.5)

Taking the environmental noise into account, we may replace therdig an average
value plus a random fluctuation term, say

bi+oii(xj —xpw(), 1<i<3,

whereo;;'s are positive constants. As a result, we have a stochastic delay Lotka—\olterra
model of food chain

dx(t) = diag(xl(t), x2(1), xg(t))
x([A(x(#) = X) + B(x(t — 1) — X)]dt + o (x(1) — X) d B(1)), (6.6)
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whereo = diag(o11, 022, 033). For illustration, we demonstrate how Theorem 4.3 can be
applied to show the globally asymptotic stability of the equilibrium with probability one.
For this purpose, we seek positive numhers2, ¢z andf such that.max(H) < 0, where

1.~ T ~ TAv 1 - T ~
H= E[CA—i—A C+o'CXo]+ 2 CBB C+ol,
while we note that condition (4.6) is already satisfied. Here, as beforediag(c, c2, ¢3).
In particular, if we set
1 1 1 1
1=, =, c3=—, 02_1
aiy a2 ass 2
we then have

1 1 . 1 - -
)\.max(H) < —E + E)\,max(UTCXU) + E)\,max(CBBTC)

It is easy to compute that

)216121 )_62(7222 3530'??3
aix ' az ' as3

max(CBB' C) < érmax(BB") = &[(afy + a3y) V (a31 + a53)],

where

Amax(0? CXo) = max{ } and

.1 1 1
C=—F+—5+—5.
2 2 2

a1 4922 433
We hence havémax(H) <0 if
= 2 - 2 < 2
X1091 X203 x3°33} AT (2 2 2 2

; ) +¢|(arp+a3p) V(a5 +axg) | <1 6.7
a11 | az | as3 [(af2+a3;) v (ag; +azg)] (6.7)
By Theorem 4.3, we can therefore conclude that the equilibiiuimglobally asymptoti-
cally stable with probability one if (6.7) is satisfied.
It is useful to observe that condition (6.7) implies that

&[(afy+ agy) v (a5 +a5y)| <1 (6.8)

max{

and

/N

2]

o2 %(1—6[(afz+a§2)v(a§1+a§3)]), 1<i<3, (6.9)

Condition (6.8) guarantees that the equilibrium of the delay equation (6.3) (without noise)
is globally asymptotically stable while condition (6.9) gives the upper bound for the noise
so that the equilibrium of the stochastic delay equation (6.6) will remain to be globally
asymptotically stable with probability one.
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