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Abstract

In this paper we stochastically perturb the delay Lotka–Volterra model

ẋ(t) = diag
(
x1(t), . . . , xn(t)

)[
A

(
x(t) − x̄

) + B
(
x(t − τ ) − x̄

)]
into the stochastic delay differential equation (SDDE)

dx(t) = diag
(
x1(t), . . . , xn(t)

){[
A

(
x(t) − x̄

) + B
(
x(t − τ ) − x̄

)]
dt + σ

(
x(t) − x̄

)
dw(t)

}
.

The main aim is to reveal the effects of environmental noise on the delay Lotka–Volterra mode
results can essentially be divided into two categories:

(i) If the delay Lotka–Volterra model already has some nice properties, e.g., nonexplosion,
tence, and asymptotic stability, then the SDDE will preserve these nice properties provid
noise is sufficiently small.

(ii) When the delay Lotka–Volterra model does not have some desired properties, e.g., nonex
and boundedness, the noise might make the SDDE achieve these desired properties.
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1. Introduction

The delay differential equation

dx(t)

dt
= x(t)

[
µ + αx(t) + δx(t − τ)

]
(1.1)

has been used to model the population growth of certain species and is known as th
Lotka–Volterra model or the delay logistic equation. The delay Lotka–Volterra mode
n interacting species is described by then-dimensional delay differential equation

dx(t)

dt
= diag

(
x1(t), . . . , xn(t)

)[
b + Ax(t) + Bx(t − τ)

]
, (1.2)

where

x = (x1, . . . , xn)
T , b = (b1, . . . , bn)

T , A = (aij )n×n, B = (bij )n×n.

There is an extensive literature concerned with the dynamics of this delay model a
here only mention Ahmad and Rao [1], Bereketoglu and Gyori [2], Freedman and Rua
He and Gopalsamy [9], Kuang and Smith [12], Teng and Yu [20] among many o
In particular, the books by Gopalsamy [8], Kolmanovskii and Myshkis [10] as we
Kuang [11] are good references in this area.

Assume that Eq. (1.2) has an equilibrium statex̄ = (x̄1, . . . , x̄n)
T in the positive cone

Rn+ = {x ∈ Rn: xi > 0, 1� i � n}. That is,

b + (A + B)x̄ = 0.

So Eq. (1.2) can be written as

dx(t)

dt
= diag

(
x1(t), . . . , xn(t)

)[
A

(
x(t) − x̄

) + B
(
x(t − τ) − x̄

)]
. (1.3)

On the other hand, population systems are often subject to environmental nois
e.g., [4–6]). It is therefore useful to reveal how the noise affects the delay popu
systems. It has been well known in the control theory that noise cannot only have a
bilising effect but can also have a stabilising effect (see, e.g., Mao [16]). It has also
revealed recently by Mao, Marion, and Renshaw [19] that the environmental nois
suppress a potential population explosion. These indicate clearly that different stru
of environmental noise may have different effects on the population systems. In this
we consider the simple situation of the parameter perturbation. Recall that the par
bi represents the intrinsic growth rate of speciesi. In practice we usually estimate it by a
average value plus an error term. In general, the error term follows a normal distrib

(by the well-known central limit theorem) and is sometimes dependent on how much the
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current population sizes differ from the equilibrium state. In other words, we can re
the ratebi by an average value plus a random fluctuation term

bi +
n∑

j=1

σij (xj − x̄j )ẇ(t),

whereσij ’s are constants anḋw(t) is a white noise, namelyw(t) is a Brownian motion
defined on a complete probability space(Ω,F , {Ft }t�0,P ) with a filtration{Ft }t�0 satis-
fying the usual conditions (i.e., it is right continuous and increasing whileF0 contains all
P -null sets). As a result, Eq. (1.2) becomes a stochastic differential delay equation (S

dx(t) = diag
(
x1(t), . . . , xn(t)

)([
A

(
x(t) − x̄

) + B
(
x(t − τ) − x̄

)]
dt

+ σ
(
x(t) − x̄

)
dw(t)

)
, (1.4)

whereσ = (σij )n×n. For more biological motivation on this type of modelling in popu
tion dynamics we refer the reader to Gard [4–6].

Since Eq. (1.2) describes stochastic population dynamics, it is critical to find
whether or not the solution

• will remain positive or never become negative,
• will not explode to infinity in a finite time,
• will be persistent (i.e., never become extinct),
• will tend to the equilibrium statēx,
• will be bounded ultimately.

In this paper we will discuss these problems one by one. Our results can essent
divided into two categories:

(i) If the delay Lotka–Volterra model already has some nice properties, e.g., nonexpl
persistence, and asymptotic stability, then the SDDE will preserve these nice pro
provided the noise is sufficiently small.

(ii) When the delay Lotka–Volterra model does not have some desired properties
nonexplosion and boundedness, the noise might make the SDDE achieve these
properties.

In particular, the results in category (ii) are surprising in the sense they reveal that the
will not only suppress a potential population explosion in the delay Lotka–Volterra m
but will also make the population to be stochastically ultimately bounded.

We should highlight the nice work of Gard [4–6] in stochastic population dynam
although they have already been referred above. The reader can find more biologic
tivation there. In particular, there are some examples of SDE multi-species Lotka–Vo
models, e.g., an example of a stochastic Lotka–Volterra food chain [6, Exampl
p. 180], and we will return to this example later for further discussion. Gard [6] als
vestigated the stochastically asymptotic stability of the equilibrium and the same ty

Lyapunov functions used there is used in our present paper. Of course, Goh [7] was one of



X. Mao et al. / J. Math. Anal. Appl. 304 (2005) 296–320 299

erra

ystem
stic

y
l-

tive.
time)
red to
ow-
they

time.
.4) is

n

any
the first authors to introduce this type of Lyapunov function in relation to Lotka–Volt
models.

We should also mention that we only consider the stochastic perturbation on the s
parameter vectorb in this paper. It is interesting to know what would happen if stocha
perturbation is added onto the system parameter matricesA andB but we will report these
results elsewhere.

2. Global positive solutions

Throughout this paper, we letRn+ denote the positive cone ofRn, namely

Rn+ = {
x ∈ Rn: xi > 0, 1� i � n

}
,

while let R̄n+ denote its closure, i.e.,

R̄n+ = {
x ∈ Rn: xi � 0, 1� i � n

}
.

It is useful to emphasise that the boundary is not included in the definition ofRn+. Let
τ > 0 and denote byC([−τ,0];Rn+) the family of continuous functions from[−τ,0]
to Rn+. If A is a vector or matrix, its transpose is denoted byAT . If A is a matrix,

its trace norm is denoted by|A| = √
trace(AT A) whilst its operator norm is denoted b

‖A‖ = sup{|Ax|: |x| = 1}. For a symmetricn × n matrixA, largest and smallest eigenva
ues are denoted byλmax(A) andλmin(A), respectively.

In this paper we consider the SDDE (1.4) for then interacting species. As theith state
xi(t) of Eq. (1.4) is the size of theith species in the system, it should be nonnega
Moreover, in order for an SDDE to have a unique global (i.e., no explosion in a finite
solution for any given initial data, the coefficients of the equation are generally requi
satisfy the linear growth condition and local Lipschitz condition (cf. Mao [14,17]). H
ever, the coefficients of Eq. (1.4) do not satisfy the linear growth condition, though
are locally Lipschitz continuous, so the solution of Eq. (1.4) may explode at a finite
It is therefore useful to establish some conditions under which the solution of Eq. (1
not only positive but will also not explode to infinite at any finite time.

Theorem 2.1. Assume that there are positive numbersc1, . . . , cn andθ such that

λmax

(
1

2

[
C̄A + AT C̄ + σT C̄X̄σ

] + 1

4θ
C̄BBT C̄ + θI

)
� 0, (2.1)

whereC̄ = diag(c1, . . . , cn), X̄ = diag(x̄1, . . . , x̄n), andI is then×n identity matrix. Then
for any given initial data{x(t): −τ � t � 0} ∈ C([−τ,0];Rn+), there is a unique solutio
x(t) to Eq.(1.4)on t � −τ and the solution will remain inRn+ with probability1, namely
x(t) ∈ Rn+ for all t � −τ almost surely.

Proof. Since the coefficients of the SDDE (1.4) are locally Lipschitz continuous, for

given initial data{x(t): −τ � t � 0} ∈ C([−τ,0];Rn+) there is a unique maximal local
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this solution is global, we need to show thatτe = ∞ a.s. Letk0 > 0 be sufficiently large for

1

k0
< min−τ�t�0

∣∣x(t)
∣∣ � max

−τ�t�0

∣∣x(t)
∣∣ < k0.

For each integerk � k0, define the stopping time

τk = inf
{
t ∈ [0, τe): xi(t) /∈ (1/k, k) for somei = 1, . . . , n

}
,

where throughout this paper we set inf∅ = ∞ (as usual∅ denotes the empty set). Clear
τk is increasing ask → ∞. Setτ∞ = limk→∞ τk , whenceτ∞ � τe a.s. If we can show
that τ∞ = ∞ a.s., thenτe = ∞ a.s. andx(t) ∈ Rn+ a.s. for allt � 0. In other words, to
complete the proof, it is sufficient to show thatτ∞ = ∞ a.s. For this purpose, let us defi
aC2-functionV : Rn+ → R+ by

V (x) =
n∑

i=1

ci x̄i

[
xi

x̄i

− 1− log

(
xi

x̄i

)]
. (2.2)

The nonnegativity of this function can be seen from that

u − 1− log(u) � 0 ∀u > 0.

Let k � k0 andT > 0 be arbitrary. For 0� t � τk ∧T , it is not difficult to show by the Itô’s
formula that

dV
(
x(t)

) = LV
(
x(t), x(t − τ)

)
dt + (

x(t) − x̄
)T

C̄σ
(
x(t) − x̄

)
dw(t), (2.3)

whereLV : Rn+ × Rn+ → R is defined by

LV (x, y) = 1

2
(x − x̄)T

[
C̄A + AT C̄ + σT C̄X̄σ

]
(x − x̄) + (x − x̄)T C̄B(y − x̄).

(2.4)

Noting that

(x − x̄)T C̄B(y − x̄) � 1

4θ
(x − x̄)T C̄BBT C̄(x − x̄) + θ |y − x̄|2

sinceθ > 0, we have

LV (x, y) � (x − x̄)T
[

1

2

(
C̄A + AT C̄ + σT C̄X̄σ

) + 1

4θ
C̄BBT C̄ + θI

]
(x − x̄)

− θ |x − x̄|2 + θ |y − x̄|2
� −θ |x − x̄|2 + θ |y − x̄|2, (2.5)

where condition (2.1) has been used. Substituting this into (2.3) yields

dV
(
x(t)

)
�

[−θ
∣∣x(t) − x̄

∣∣2 + θ
∣∣x(t − τ) − x̄

∣∣2]dt

+ (
x(t) − x̄

)T
C̄σ

(
x(t) − x̄

)
dw(t). (2.6)

We can now integrate both sides of (2.6) from 0 toτk ∧ T and then take the expectatio

to get
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EV
(
x(τk ∧ T )

)
� V

(
x(0)

) + E

τk∧T∫
0

[−θ
∣∣x(t) − x̄

∣∣2 + θ
∣∣x(t − τ) − x̄

∣∣2]dt. (2.7)

Compute

E

τk∧T∫
0

∣∣x(t − τ) − x̄
∣∣2 dt = E

τk∧T −τ∫
−τ

∣∣x(t) − x̄
∣∣2 dt

�
0∫

−τ

∣∣x(t) − x̄
∣∣2 dt + E

τk∧T∫
0

∣∣x(t) − x̄
∣∣2 dt.

Substituting this into (2.7) gives

EV
(
x(τk ∧ T )

)
� K := V

(
x(0)

) + θ

0∫
−τ

∣∣x(t) − x̄
∣∣2 dt. (2.8)

Note that for everyω ∈ {τk � T }, there is somei such thatxi(τk,ω) equals eitherk or 1/k,
and henceV (x(τk,ω)) is no less than either

min
1�i�n

{
ci x̄i

[
k

x̄i

− 1− log

(
k

x̄i

)]}
or min

1�i�n

{
ci x̄i

[
1

kx̄i

− 1− log

(
1

kx̄i

)]}
.

That is

V
(
x(τk,ω)

)
� min

1�i�n

{
ci x̄i

([
k

x̄i

− 1− log

(
k

x̄i

)]
∧

[
1

kx̄i

− 1+ log(kx̄i)

])}
.

It then follows from (2.8) that

K � E
[
1{τk�T }(ω)V

(
x(τk,ω)

)]
� P {τk � T } min

1�i�n

{
ci x̄i

([
k

x̄i

− 1− log

(
k

x̄i

)]
∧

[
1

kx̄i

− 1+ log(kx̄i)

])}
,

where 1{τk�T } is the indicator function of{τk � T }. Lettingk → ∞ gives

lim
k→∞P {τk � T } = 0

and hence

P {τ∞ � T } = 0.

SinceT > 0 is arbitrary, we must have

P {τ∞ < ∞} = 0,

soP {τ∞ = ∞} = 1 as required. �
It is interesting to observe that condition (2.1) implies(

1[
T

] 1 T

)

λmax

2
C̄A + A C̄ +

4θ
C̄BB C̄ + θI � 0,
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while this condition guarantees that the delay Lotka–Volterra equation (1.3) will ha
global positive solution. Hence, Theorem 2.1 tells us that under this condition, if the
intensity matrixσ is sufficiently small for (2.1) to hold, then the stochastically pertur
system (1.4) of the delay Lotka–Volterra equation (1.3) will remain to have a global
itive solution. In other words, Theorem 2.1 gives a result on the robustness of the
positive solution.

We also observe from the proof above that condition (2.1) is used to derive
from (2.4). But there are several different ways to estimate (2.4) which will lead to
ferent alternative conditions for the global positive solution. For example, we know t

(x − x̄)T C̄B(y − x̄) � 1

2θ
(x − x̄)T C̄(x − x̄) + θ

2
(y − x̄)T BT C̄B(y − x̄)

holds for anyθ > 0. So

LV (x, y) � 1

2
(x − x̄)T

[
C̄A + AT C̄ + σT C̄X̄σ + θ−1C̄ + θBT C̄B

]
(x − x̄)

− θ

2
(x − x̄)T BT C̄B(x − x̄) + θ

2
(y − x̄)T BT C̄B(y − x̄). (2.9)

If we assume that

λmax
(
C̄A + AT C̄ + σT C̄X̄σ + θ−1C̄ + θBT C̄B

)
� 0,

we will then have

LV (x, y) � −θ

2
(x − x̄)T BT C̄B(x − x̄) + θ

2
(y − x̄)T BT C̄B(y − x̄). (2.10)

From this we can show in the same way as in the proof of Theorem 2.1 that the solu
Eq. (1.4) is positive and global. In other words, the arguments above give us an alte
result which we describe as a theorem below.

Theorem 2.2. Assume that there are positive numbersc1, . . . , cn andθ such that

λmax
(
C̄A + AT C̄ + σT C̄X̄σ + θ−1C̄ + θBT C̄B

)
� 0, (2.11)

whereC̄ and X̄ are the same as defined in Theorem2.1. Then for any given initial data
{x(t): −τ � t � 0} ∈ C([−τ,0];Rn+), there is a unique solutionx(t) to Eq. (1.4) on
t � −τ and the solution will remain inRn+ with probability 1, namelyx(t) ∈ Rn+ for all
t � −τ almost surely.

We leave the other alternatives to the reader. We observe that both condition
and (2.11) involve all the three matricesA, B, andσ which appear in Eq. (1.4). Bot
theorems tell us that if Eq. (1.3) (without noise) has a global positive solution, the
stochastically perturbed system (1.4) will also have a global positive solution as lo
the noise is sufficiently small. The question is: if the noise is not sufficiently small
would happen? In general, one may think that the SDDE (1.4) may no longer have a
positive solution. However, we shall now establish a surprising result on the global po
solution, where a very simple condition will be imposed on the noise intensity matσ
but no condition on either matrixA or B at all.
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Theorem 2.3. Assume that the noise intensity matrixσ = (σij )n×n has the property that

σii > 0 for 1� i � n while σij � 0 for i 	= j, 1� i, j � n. (2.12)

Then for any given initial data{x(t): −τ � t � 0} ∈ C([−τ,0];Rn+), there is a unique
solutionx(t) to Eq.(1.4)on t � −τ and the solution will remain inRn+ with probability1,
namelyx(t) ∈ Rn+ for all t � −τ almost surely.

Before the proof of this theorem, let us comment on its significant features. First
this theorem shows that if Eq. (1.3) (without noise) has a global positive solution, t
large noise may not change this property. Next, this theorem shows that although Eq
may not have a global positive solution (e.g., its solution may explode to infinity at a
time), the corresponding SDDE (1.4) will have a global positive solution. For exam
consider the one-dimensional differential delay equation

dx(t)

dt
= x(t)

[
2
(
x(t) − 1

) − (
x(t − τ) − 1

)]
.

If the initial functionx(t) is increasing on[−τ,0] andx(−τ) > 1, it is then not difficult to
show that the corresponding solution will explode to infinity at a finite time. Howeve
Theorem 2.3, the SDDE

dx(t) = x(t)
([

2
(
x(t) − 1

) − (
x(t − τ) − 1

)]
dt + σ

(
x(t) − 1

)
dw(t)

)
will have a unique global positive solution for any initial data inC([−τ,0]; (0,∞)), where
σ > 0. In other words, this theorem reveals an important fact that the noise can su
a potential population explosion in a delay population system. This is a generalised
of [19].

Proof of Theorem 2.3. We use the same notation as in the proof of Theorem 2.1 ex
theC2-functionV : Rn+ → R+ is now defined by

V (x) =
n∑

i=1

[√
xi − 1− 0.5 log(xi)

]
. (2.13)

Let k � k0 andT > 0 be arbitrary. For 0� t � τk ∧ T , we can show by the Itô’s formul
that

dV
(
x(t)

) = LV
(
x(t), x(t − τ)

)
dt + 0.5ψ

(
x(t)

)
σ
(
x(t) − x̄

)
dw(t), (2.14)

whereψ(x) = (
√

x1 − 1, . . . ,
√

xn − 1) andLV : Rn+ × Rn+ → R is defined by

LV (x, y) = 0.5ψ(x)
[
A(x − x̄) + B(y − x̄)

] + 0.5
∣∣σ(x − x̄)

∣∣2
− 0.125

n∑
i=1

√
xi

(
n∑

j=1

σij (xj − x̄j )

)2

. (2.15)

√

Noting that|ψ(x)| � n(|x| + 1), we compute
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0.5ψ(x)
[
A(x − x̄) + B(y − x̄)

] + 0.5
∣∣σ(x − x̄)

∣∣2
� 0.5

√
n(|x| + 1)

[‖A‖(|x| + |x̄|) + ‖B‖(|y| + |x̄|)] + 0.5‖σ‖2|x − x̄|2
� 0.5

√
n(|x| + 1)

[‖A‖(|x| + |x̄|) + ‖B‖|x̄|]
+ 0.25‖B‖[n(|x| + 1

) + |y|2] + ‖σ‖2(|x|2 + |x̄|2). (2.16)

Moreover,

n∑
i=1

√
xi

(
n∑

j=1

σij (xj − x̄j )

)2

=
n∑

i=1

√
xi

{(
n∑

j=1

σij xj

)2

+
(

n∑
j=1

σij x̄j

)(
n∑

j=1

σij x̄j − 2
n∑

j=1

σij xj

)}

�
n∑

i=1

σiix
2.5
i +

n∑
i=1

√
xi

(
n∑

j=1

σij x̄j

)(
n∑

j=1

σij x̄j − 2
n∑

j=1

σij xj

)
. (2.17)

Substituting (2.16) and (2.17) into (2.15) yields

LV (x, y) � κ(x) − 0.25‖B‖(|x|2 − |y|2), (2.18)

where

κ(x) = 0.5
√

n(|x| + 1)
[‖A‖(|x| + |x̄|) + ‖B‖|x̄|]

+ 0.25‖B‖[n(|x| + 1
) + |x|2] + ‖σ‖2(|x|2 + |x̄|2)

− 0.125
n∑

i=1

σiix
2.5
i − 0.125

n∑
i=1

√
xi

(
n∑

j=1

σij x̄j

)(
n∑

j=1

σij x̄j − 2
n∑

j=1

σij xj

)
.

It is easy to see thatκ(x) is bounded above, say byK1, in Rn+. Thus

LV (x, y) � K1 − 0.25‖B‖(|x|2 − |y|2).
Inserting this into (2.14) gives

dV
(
x(t)

)
�

[
K1 − 0.25‖B‖(∣∣x(t)

∣∣2 − ∣∣x(t − τ)
∣∣2)]dt

+ 0.5ψ
(
x(t)

)
σ
(
x(t) − x̄

)
dw(t). (2.19)

We can now integrate both sides of this inequality from 0 toτk ∧ T and then take the
expectations to get

EV
(
x(τk ∧ T )

)
� V

(
x(0)

) + K1T − 0.25‖B‖E
τk∧T∫
0

[∣∣x(t)
∣∣2 − ∣∣x(t − τ)

∣∣2]dt.

(2.20)

It is easy to show that

E

τk∧T∫ ∣∣x(t − τ)
∣∣2 dt �

0∫ ∣∣x(t)
∣∣2 dt + E

τk∧T∫ ∣∣x(t)
∣∣2 dt.
0 −τ 0
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Substituting this into (2.20), we obtain that

EV
(
x(τk ∧ T )

)
� V

(
x(0)

) + K1T + 0.25‖B‖
0∫

−τ

∣∣x(t)
∣∣2 dt. (2.21)

The remaining of the proof is very similar to those in the proof of Theorem 2.1 and h
the proof is complete. �

3. Stochastic persistence and confidence interval

From now on we shall denote byx(t; ξ) the unique global positive solution of th
SDDE (1.4) given initial dataξ = {ξ(t): −τ � t � 0} ∈ C([−τ,0];Rn+). One of the impor-
tant properties in population dynamics is the persistence which means every spec
never become extinct. The most natural analogue for the stochastic population dy
(1.4) is that every species will never become extinct with probability 1. To be precis
us give the definition.

Definition 3.1. The SDDE (1.4) is said to be persistent with probability 1 if, for ev
initial dataξ = {ξ(t): −τ � t � 0} ∈ C([−τ,0];Rn+), the solutionx(t; ξ) has the property
that

lim inf
t→∞ xi(t; ξ) > 0 a.s. for all 1� i � n. (3.1)

In the previous section we have shown that either condition (2.1) or (2.11) guara
the unique global positive solution. We shall now show that either of them also guara
the persistence with probability 1.

Theorem 3.2. Assume that there are positive numbersc1, . . . , cn and θ such that either
(2.1) or (2.11) holds. Then Eq.(1.4) is persistent with probability1. Moreover, for any
initial data ξ = {ξ(t): −τ � t � 0} ∈ C([−τ,0];Rn+), the solutionx(t; ξ) has the property
that

lim sup
t→∞

xi(t; ξ) < ∞ a.s. for all1� i � n. (3.2)

To prove this theorem we will need the nonnegative semimartingale convergence
rem (see, e.g., [13, Theorem 7, p. 139]) which we cite as a lemma below.

Lemma 3.3. Let A(t) and U(t) be two continuousFt -adapted increasing processes
t � 0 with A(0) = U(0) = 0 a.s. LetM(t) be a real-valued continuous local martinga
with M(0) = 0 a.s. Letζ be a nonnegativeF0-measurable random variable such th
Eζ < ∞. Define
X(t) = ζ + A(t) − U(t) + M(t) for t � 0.
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be

(2.6)
Then, ifX(t) is nonnegative,{
lim

t→∞A(t) < ∞
}

⊂
{

lim
t→∞X(t) < ∞

}
∩

{
lim

t→∞U(t) < ∞
}

a.s.,

whereB ⊂ D a.s. meansP(B ∩Dc) = 0. In particular, if limt→∞ A(t) < ∞ a.s., then for
almost allω ∈ Ω ,

lim
t→∞X(t,ω) < ∞, lim

t→∞U(t,ω) < ∞, and − ∞ < lim
t→∞M(t,ω) < ∞.

Proof of Theorem 3.2. We only prove the theorem under condition (2.1) since it can
done in the same way under condition (2.11). Fix any initial dataξ and writex(t; ξ) = x(t)

for simplicity. Using the same notation as in the proof of Theorem 2.1, we derive from
that

V
(
x(t)

)
� V

(
ξ(0)

) +
t∫

0

[−θ
∣∣x(s) − x̄

∣∣2 + θ
∣∣x(s − τ) − x̄

∣∣2]ds + M(t),

where

M(t) =
t∫

0

(
x(s) − x̄

)T
C̄σ

(
x(s) − x̄

)
dw(s) (3.3)

is a continuous local martingale withM(0) = 0. It is easy to show that

t∫
0

∣∣x(s − τ) − x̄
∣∣2 ds �

0∫
−τ

∣∣ξ(s) − x̄
∣∣2 ds +

t∫
0

∣∣x(s) − x̄
∣∣2 ds.

Substituting this into the previous inequality yields

V
(
x(t)

)
� ζ + M(t), (3.4)

whereζ = V (ξ(0)) + ∫ 0
−τ

|ξ(s) − x̄|2 ds is a positive constant. SinceV (x(t)) � 0,

X(t) := ζ + M(t) � 0.

By Lemma 3.3, limt→∞ X(t) < ∞ a.s. Hence

lim sup
t→∞

V
(
x(t)

)
< ∞ a.s. (3.5)

Recalling the definition ofV (i.e., (2.2)), we obtain that

lim sup
t→∞

[
xi(t)

x̄i

− 1− log

(
xi(t)

x̄i

)]
< ∞ a.s.

for all 1� i � n. Note that

u − 1− log(u) → ∞ if and only if u ↓ 0 oru ↑ ∞.

We must therefore have

0< lim inf
t→∞ xi(t) � lim sup

t→∞
xi(t) < ∞ a.s.
for everyi = 1, . . . , n as required. �
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Theorem 3.2 shows that, for everyi, both

ui := lim inf
t→∞ xi(t) and vi := lim sup

t→∞
xi(t)

are finite and positive random variables. Hence there is a random variableT = T (ω) > 0
such that

ui

2
� xi(t) � vi + 1 for all t � T .

On the other hand,xi(t) is continuous and positive on[−τ, T ], so

0< min−τ�t�T
xi(t) � max

−τ�t�T
xi(t) < ∞.

Thus, there is a pair of finite and positive random variablesūi andv̄i such that

P
{
ūi � xi(t) � v̄i for all t � −τ

} = 1. (3.6)

This implies that for anyε ∈ (0,1), there is a pair of positive constantsαi andβi , which
might depend onξ andε, such that

P
{
αi � xi(t) � βi for all t � −τ

}
� 1− ε.

This means that the solution of Eq. (1.4) will remain within a compact subset ofRn+ with
large probability. It is certainly much more useful if bothαi andβi can be estimated mor
precisely. For this purpose we introduce a continuous function

h(u) = u − 1− log(u) onu > 0.

This function has the properties thath(1) = 0; h(u) is strictly increasing to∞ asu de-
creases from 1 to 0 or asu increases from 1 to∞. Hence for anyv > 0, the equation
h(u) = v has two roots: one in(0,1) and the other in(1,∞) that are denoted byh−1

l (v)

andh−1
r (v), respectively. We also naturally seth−1

l (0) = h−1
r (0) = 1. So bothh−1

l (v) and
h−1

r (v) are well-defined onv � 0. Also,h−1
l (v) is decreasing whileh−1

r (v) is increasing.
Moreover,

h
(
h−1

l (v)
) = h

(
h−1

r (v)
) = v onv � 0, (3.7)

while

h−1
l

(
h(u)

)
� u � h−1

r

(
h(u)

)
onu > 0. (3.8)

With this notation we can describeαi andβi more precisely.

Theorem 3.4. Assume that there are positive numbersc1, . . . , cn and θ such that either
(2.1) or (2.11)holds. Then for any initial dataξ = {ξ(t): −τ � t � 0} ∈ C([−τ,0];Rn+)

and any positive numberε ∈ (0,1), the solution of Eq.(1.4)has the property that

P
{
αi < xi(t; ξ) < βi for all t � −τ, 1� i � n

}
� 1− ε (3.9)

with

−1
[

ϕ(ξ)
]

−1
[

ϕ(ξ)
]

αi = x̄ihl εci x̄i

and βi = x̄ihr εci x̄i

, (3.10)
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same
where we set

ϕ(ξ) = sup
−τ�s�0

V
(
ξ(s)

) + θ

0∫
−τ

∣∣ξ(s) − x̄
∣∣2 ds,

if condition(2.1)holds, while

ϕ(ξ) = sup
−τ�s�0

V
(
ξ(s)

) + θ

2

0∫
−τ

(
ξ(s) − x̄

)T
BT C̄B

(
ξ(s) − x̄

)
ds,

if condition(2.11)holds, in whichV is defined by(2.2).

Proof. We only prove the theorem under condition (2.1) since it can be done in the
way under condition (2.11). Fix any initial dataξ and writex(t; ξ) = x(t) for simplicity.
By the definitions ofV , h−1

l , h−1
r and their properties, especially (3.8), we have

αi � x̄ih
−1
l

[
V (ξ(s))

ci x̄i

]
< x̄ih

−1
l

[
h

(
ξi(s)

x̄i

)]
� ξi(s), −τ � s � 0,

while

βi � x̄ih
−1
r

[
V (ξ(s))

ci x̄i

]
> x̄ih

−1
r

[
h

(
ξi(s)

x̄i

)]
� ξi(s), −τ � s � 0

for every 1� i � n. Define the stopping time

ρ = inf
{
t � 0: xi(t) /∈ (αi, βi) for somei

}
.

Then for anyt � 0, it follows from (2.6) that

EV
(
x(ρ ∧ t)

)
� V

(
ξ(0)

) + E

ρ∧t∫
0

[−θ
∣∣x(s) − x̄

∣∣2 + θ
∣∣x(s − τ) − x̄

∣∣2]ds.

But

E

ρ∧t∫
0

∣∣x(s − τ) − x̄
∣∣2 ds �

0∫
−τ

∣∣ξ(s) − x̄
∣∣2 ds + E

ρ∧t∫
0

∣∣x(s) − x̄
∣∣2 ds.

We hence have

ϕ(ξ) � EV
(
x(ρ ∧ t)

)
� E

[
1{ρ�t}(ω)V

(
x(ρ;ω)

)]
. (3.11)

Note that for everyω ∈ {ρ � t}, there is somei = i(ω) such thatxi(ρ;ω) is equal to either
αi or βi . If xi(ρ;ω) = αi ,

V
(
x(ρ;ω)

)
� ci x̄ih

(
αi

x̄i

)
= ci x̄ih

[
h−1

l

(
ϕ(ξ)

εci x̄i

)]
= ϕ(ξ)

ε
,

while if xi(ρ) = βi ,( ) (
βi

) [
−1

(
ϕ(ξ)

)]
ϕ(ξ)
V x(ρ;ω) � ci x̄ih
x̄i

= ci x̄ih hr εci x̄i

=
ε

.
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(1.4)
h may
r the
That is, we always have

V
(
x(ρ;ω)

)
� ϕ(ξ)

ε
if ω ∈ {ρ � t}.

Substituting this into (3.11) yields

ϕ(ξ) � ϕ(ξ)

ε
P {ρ � t}.

That is

P {ρ � t} � ε.

Letting t → ∞ producesP {ρ < ∞} � ε. Hence

P {ρ = ∞} � 1− ε

which means

P
{
αi < xi(t;x0) < βi for all t � −τ, 1� i � n

}
� 1− ε,

as required. �

4. Asymptotic stability

Property (3.6) shows that almost every sample path of the solution of the SDDE
will remain in a compact set. In this section we shall discuss how the sample pat
vary within the compact set in more detail. In particular, we shall investigate whethe
solution will tend to the equilibrium statēx or not.

We will need two more new notations. IfG is a closed subset ofRn andx ∈ Rn, define

d(x;G) = min
{|x − y|: y ∈ G

}
,

i.e., the distance between vectorx and setG. Denote byR̄n+ the closure ofRn+, namely
R̄n+ = {x ∈ Rn: xi � 0 for all 1� i � n}.

Theorem 4.1. Assume that there are positive numbersc1, . . . , cn and θ such that either
(2.1)or (2.11)holds. Then for any initial dataξ = {ξ(t): −τ � t � 0} ∈ C([−τ,0];Rn+),
the solution of Eq.(1.4)has the property that

lim
t→∞d

(
x(t; ξ),K

) = 0 a.s. (4.1)

with

K = {
x ∈ R̄n+: (x − x̄)T H(x − x̄) = 0

}
, (4.2)

where we set

H = 1

2

[
C̄A + AT C̄ + σT C̄X̄σ

] + 1

4θ
C̄BBT C̄ + θI, (4.3)

if condition(2.1)holds, while

H = C̄A + AT C̄ + σT C̄X̄σ + θ−1C̄ + θBT C̄B, (4.4)
if condition(2.11)holds.
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This theorem follows from Mao [18, Theorem 2.1]. Although the general resul
tablished in Mao [18] is for an SDDE with the state space ofRn, it is applicable to the
SDDE (1.4) which has the positive coneRn+ as an invariant set shown by Theorem 2
The following useful result on the asymptotic stability follows from Theorem 4.1 dire

Theorem 4.2. Assume that there are positive numbersc1, . . . , cn andθ such that the sym
metric matrixH defined by either(4.3) or (4.4) is negative-definite. Then for any initi
data ξ = {ξ(t): −τ � t � 0} ∈ C([−τ,0];Rn+), the solution of Eq.(1.4) has the property
that

lim
t→∞x(t; ξ) = x̄ a.s. (4.5)

Proof. SinceH is negative-definite, the setK defined by (4.2) reduces toK = {x̄}. Theo-
rem 4.1 hence shows that

lim
t→∞d

(
x(t; ξ),K

) = lim
t→∞

∣∣x(t; ξ) − x̄
∣∣ = 0 a.s.,

which is the desired assertion (4.5).�
Most of the results in this paper requireH to be non-positive-definite except the theor

above. We therefore wonder whether the solution will still tend to the equilibrium st
H is only non-positive-definite? The following result does not only give a positive an
but also reveal the important role of noise in stabilisation.

Theorem 4.3. Assume that there are positive numbersc1, . . . , cn and θ such that either
(2.1)or (2.11)holds and, moreover,

C̄σ + σT C̄ is either positive-definite or negative-definite. (4.6)

Then the conclusion(4.5)of Theorem4.2still holds.

Proof. Once again we only prove the theorem under condition (2.1) since it can be
in the same way under condition (2.11). Fix any initial dataξ and writex(t; ξ) = x(t) for
simplicity. We will use the same notation as in the proofs of Theorems 2.1 and 3.
Lemma 3.3, we obtain from (3.4) that

−∞ < lim
t→∞M(t) < ∞ a.s., (4.7)

whereM(t) is defined by (3.3). For any integerk � 1, define the stopping time

τk = inf
{
t � 0:

∣∣M(t)
∣∣ � k

}
.

Clearlyτk ↑ ∞ a.s. and, by (4.7),P(Ω1) = 1 where

Ω1 =
∞⋃

k=1

{
ω: τk(ω) = ∞}

. (4.8)

Note that for anyt � 0,

E

t∧τk∫ ∣∣(x(s) − x̄
)T

C̄σ
(
x(s) − x̄

)∣∣2 ds = E
∣∣M(t ∧ τk)

∣∣2 � k2.
0
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Letting t → ∞ and using the well-known Fatou lemma, we obtain

E

τk∫
0

∣∣(x(s) − x̄
)T

C̄σ
(
x(s) − x̄

)∣∣2 ds � k2,

which yields

τk∫
0

∣∣(x(s) − x̄
)T

C̄σ
(
x(s) − x̄

)∣∣2 ds < ∞ a.s.

Therefore, there is a subsetΩ2 of Ω with P(Ω2) = 1 such that for allω ∈ Ω2,

τk(ω)∫
0

∣∣(x(s;ω) − x̄
)T

C̄σ
(
x(s;ω) − x̄

)∣∣2 ds < ∞ for all k � 1. (4.9)

Now for anyω ∈ Ω1 ∩ Ω2, there is an integer̄k = k̄(ω), by (4.8), such thatτk̄(ω) = ∞;
hence by (4.9),

∞∫
0

∣∣(x(s;ω) − x̄
)T

C̄σ
(
x(s;ω) − x̄

)∣∣2 ds < ∞.

SinceP(Ω1 ∩ Ω2) = 1, we obtain

∞∫
0

∣∣(x(s) − x̄
)T

C̄σ
(
x(s) − x̄

)∣∣2 ds < ∞ a.s. (4.10)

If C̄σ + σT C̄ is positive-definite, then

(
x(s) − x̄

)T
C̄σ

(
x(s) − x̄

) = 1

2

(
x(s) − x̄

)T (
C̄σ + σT C̄

)(
x(s) − x̄

)
� λmin

(
C̄σ + σT C̄

)∣∣x(s) − x̄
∣∣2 � 0,

whence∣∣(x(s) − x̄
)T

C̄σ
(
x(s) − x̄

)∣∣2 �
[
λmin

(
C̄σ + σT C̄

)]2∣∣x(s) − x̄
∣∣4.

Substituting this into (4.10) yields

∞∫
0

∣∣x(s) − x̄
∣∣4 ds < ∞ a.s. (4.11)

Similarly, we can show this holds if̄Cσ + σT C̄ is negative-definite. It is straightforwar
to show from (4.11) that∣ ∣
lim inf
t→∞

∣x(t) − x̄∣ = 0 a.s. (4.12)
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and

lim
t→∞

t∫
t−τ

∣∣x(s) − x̄
∣∣4 ds = 0 a.s. (4.13)

Noting

t∫
t−τ

∣∣x(s) − x̄
∣∣2 ds �

(
τ

t∫
t−τ

∣∣x(s) − x̄
∣∣4 ds

)1/2

,

we see from (4.13) that

lim
t→∞

t∫
t−τ

∣∣x(s) − x̄
∣∣2 ds = 0 a.s. (4.14)

Let us now defineµ : (0,∞) → (0,∞) by

µ(u) = inf
x∈Rn+, |x−x̄|�u

V (x).

By the definition ofV (x), namely (2.2), it is clear thatµ(u) ↓ 0 asu ↓ 0. Let ε > 0 be
arbitrary and set

δ = 1

2
εµ(ε). (4.15)

Define the stopping time:

ρ = inf

{
t � 0: V

(
x(t)

) + θ

t∫
t−τ

∣∣x(s) − x̄
∣∣2 ds � δ

}
.

It follows from (4.12) and (4.14) thatP {ρ < ∞} = 1. We can therefore find a positiv
constantT sufficiently large for

P {ρ � T } � 1− ε

2
. (4.16)

Now, define two stopping times

α =
{

ρ, if ρ � T ,
∞, otherwise

and β = inf
{
t � α:

∣∣x(t) − x̄
∣∣ � ε

}
.

We then derive from (2.6) that for anyt � T ,

EV
(
x(β ∧ t)

)

� E

(
V

(
x(α ∧ t)

) +
β∧t∫

α∧t

[−θ
∣∣x(s) − x̄

∣∣2 + θ
∣∣x(s − τ) − x̄

∣∣2]ds

)
. (4.17)
Let 1G denote the indicator function of setG. Noting that



X. Mao et al. / J. Math. Anal. Appl. 304 (2005) 296–320 313
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native
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native

(1.4)
E

{
1{α>T }

(
V

(
x(α ∧ t)

) +
β∧t∫

α∧t

[−θ
∣∣x(s) − x̄

∣∣2 + θ
∣∣x(s − τ) − x̄

∣∣2]ds

)}

= E
{
1{α>T }V

(
x(t)

)} = E
{
1{α>T }V

(
x(β ∧ t)

)}
,

we then derive from (4.17) that

E
{
1{α�T }V

(
x(β ∧ t)

)}

� E

{
1{α�T }

(
V

(
x(α)

) +
β∧t∫
α

[−θ
∣∣x(s) − x̄

∣∣2 + θ
∣∣x(s − τ) − x̄

∣∣2]ds

)}

� E

{
1{α�T }

(
V

(
x(α)

) + θ

α∫
α−τ

∣∣x(s) − x̄
∣∣2 ds

)}

� δ. (4.18)

Noting {β � t} ⊂ {α � T } and recalling the definition ofµ(·), we further obtain

µ(ε)P {β � t} � δ.

Letting t → ∞ and using (4.15), we have

P {β < ∞} � ε

2
.

Hence, by (4.16) and the definition ofα,

P {α < ∞ andβ = ∞} � P {α � T } − P {β < ∞} � 1− ε.

But this means that

P
{
lim sup
t→∞

∣∣x(t) − x̄
∣∣ � ε

}
� 1− ε.

Sinceε > 0 is arbitrary, we must have

P
{

lim
t→∞

∣∣x(t) − x̄
∣∣ = 0

}
= 1

as required. �

5. Stochastically ultimate boundedness

In the previous two sections we have discussed the asymptotic properties
SDDE (1.4) under the condition that the noise is sufficiently small, namely under e
condition (2.1) or (2.11). On the other hand, Theorem 2.3 provides us with the alter
condition (2.12) for the global positive solutions, where the noise could be large. It is
fore useful to discuss the asymptotic properties of the SDDE (1.4) under this alter
condition.

Theorem 2.3 shows that under the simple condition (2.12) the solutions of Eq.

will remain in the positive coneRn+ for ever. However, this nonexplosion property in a
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d.
population dynamical system is often not good enough while the property of ulti
boundedness is more desired. Let us now give the definition of stochastically ul
boundedness.

Definition 5.1. The SDDE (1.4) is said to be stochastically ultimately bounded if for
ε ∈ (0,1), there is a positive constantH = H(ε) such that for any initial data{x(t): −τ �
t � 0} ∈ C([−τ,0];Rn+), the solutionx(t) of Eq. (1.4) has the property that

lim sup
t→∞

P
{∣∣x(t)

∣∣ � H
}

� 1− ε. (5.1)

The following theorem reveals another important property: the environmental
could make a delay population system become stochastically ultimately bounded.

Theorem 5.2. Let condition(2.12)hold. Then for anyθ ∈ (0,1), there is a positive constan
K(θ) such that for any initial data{x(t): −τ � t � 0} ∈ C([−τ,0];Rn+), the solutionx(t)

of Eq.(1.4)has the property that

lim sup
t→∞

E
∣∣x(t)

∣∣θ � K(θ). (5.2)

In particular, under condition(2.12), the SDDE(1.4) is stochastically ultimately bounde

Proof. Define

V (x) =
n∑

i=1

xθ
i for x ∈ Rn+.

By the Itô’s formula, we have

dV
(
x(t)

) = LV
(
x(t), x(t − τ)

)
dt

+
(

n∑
i=1

θxθ
i (t)

n∑
j=1

σij

(
xj (t) − x̄j

))
dw(t), (5.3)

whereLV : Rn+ × Rn+ → R is defined by

LV (x, y) =
n∑

i=1

θxθ
i

n∑
j=1

[
aij (xj − x̄j ) + bij (yj − x̄j )

]

− θ(1− θ)

2

n∑
i=1

xθ
i

[
n∑

j=1

σij (xj − x̄j )

]2

.

Compute

LV (x, y) �
n∑

i=1

θxθ
i

n∑
j=1

[
aij (xj − x̄j ) − bij x̄j

] +
n∑

i=1

n∑
j=1

[
n

4
θ2b2

ij x
2θ
i + 1

n
y2
j

]

− θ(1− θ)
n∑

xθ
i

{(
n∑

σij xj

)2
2
i=1 j=1
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+
(

n∑
j=1

σij x̄j

)(
n∑

j=1

σij x̄j − 2
n∑

j=1

σij xj

)}

�
n∑

i=1

θxθ
i

n∑
j=1

[
aij (xj − x̄j ) − bij x̄j

] +
n∑

i=1

n∑
j=1

n

4
θ2b2

ij x
2θ
i + |y|2

− θ(1− θ)

2

n∑
i=1

xθ
i

{
σ 2

iix
2
i +

(
n∑

j=1

σij x̄j

)(
n∑

j=1

σij x̄j − 2
n∑

j=1

σij xj

)}

= F(x) − V (x) − eτ |x|2 + |y|2, (5.4)

where

F(x) = V (x) + eτ |x|2 +
n∑

i=1

θxθ
i

n∑
j=1

[
aij (xj − x̄j ) − bij x̄j

] +
n∑

i=1

n∑
j=1

n

4
θ2b2

ij x
2θ
i

− θ(1− θ)

2

n∑
i=1

xθ
i

{
σ 2

iix
2
i +

(
n∑

j=1

σij x̄j

)(
n∑

j=1

σij x̄j − 2
n∑

j=1

σij xj

)}
.

Note thatF(x) is bounded above inRn+, namely

K1 := sup
x∈Rn+

F(x) < ∞.

We therefore have

LV (x, y) � K1 − V (x) − eτ |x|2 + |y|2.
Substituting this into (5.3) gives

dV
(
x(t)

)
�

[
K1 − V

(
x(t)

) − eτ
∣∣x(t)

∣∣2 + ∣∣x(t − τ)
∣∣2]dt

+
(

n∑
i=1

θxθ
i (t)

n∑
j=1

σij

(
xj (t) − x̄j

))
dw(t). (5.5)

Once again by the Itô’s formula we have

d
[
etV

(
x(t)

)] = et
[
V

(
x(t)

)
dt + dV

(
x(t)

)]
� et

[
K1 − eτ

∣∣x(t)
∣∣2 + ∣∣x(t − τ)

∣∣2]dt

+ et

(
n∑

i=1

θxθ
i (t)

n∑
j=1

σij

(
xj (t) − x̄j

))
dw(t).

We hence derive that

etEV
(
x(t)

)
� V

(
x(0)

) + K1e
t − E

t∫
es+τ

∣∣x(s)
∣∣2 ds + E

t∫
es

∣∣x(s − τ)
∣∣2 ds
0 0
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solu-
= V
(
x(0)

) + K1e
t − E

t∫
0

es+τ
∣∣x(s)

∣∣2 ds + E

t−τ∫
−τ

es+τ
∣∣x(s)

∣∣2 ds

� V
(
x(0)

) + K1e
t +

0∫
−τ

∣∣x(s)
∣∣2 ds.

This implies immediately that

lim sup
t→∞

EV
(
x(t)

)
� K1. (5.6)

On the other hand, we have

|x|2 � n max
1�i�n

x2
i

so

|x|θ � nθ/2 max
1�i�n

xθ
i � nθ/2V (x).

It then follows from (5.6) that

lim sup
t→∞

E
∣∣x(t)

∣∣θ � nθ/2K1,

which yields the required assertion (5.2) by settingK(θ) = nθ/2K1. In particular, let
θ = 0.5 andK = K(0.5). Then

lim sup
t→∞

E
(√|x(t)| ) � K.

Now, for anyε > 0, letH = K2/ε2. Then by Chebyshev’s inequality,

P
{∣∣x(t)

∣∣ > H
}

� E(
√|x(t)| )√

H
.

Hence

lim sup
t→∞

P
{∣∣x(t)

∣∣ > H
}

� K√
H

= ε.

This implies

lim sup
t→∞

P
{∣∣x(t)

∣∣ � H
}

� 1− ε.

In other words, the SDDE (1.4) is stochastically ultimately bounded.�
The following result shows that the average in time of the second moment of the

tions will be bounded.

Theorem 5.3. Let condition(2.12) hold. Then there is a positive constantK , which is
independent of the initial data{x(t): −τ � t � 0} ∈ C([−τ,0];Rn+), such that the solution
x(t) of Eq.(1.4)has the property that

lim sup
1

t∫
E

∣∣x(s)
∣∣2 ds � K. (5.7)
t→∞ t
0
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Proof. We use the same notation as in the proof of Theorem 5.2 except we setθ = 0.5. It
then follows from (5.4) that

LV (x, y) � G(x) − 2|x|2 + |y|2,
where

G(x) = 2|x|2 +
n∑

i=1

0.5x0.5
i

n∑
j=1

[
aij (xj − x̄j ) − bij x̄j

] +
n∑

i=1

n∑
j=1

n

16
b2
ij xi

− 1

8

n∑
i=1

x0.5
i

{
σ 2

iix
2
i +

(
n∑

j=1

σij x̄j

)(
n∑

j=1

σij x̄j − 2
n∑

j=1

σij xj

)}
.

Note thatG(x) is bounded inRn+, namely

K := sup
x∈Rn+

G(x) < ∞.

We therefore have

LV (x, y) � K − 2|x|2 + |y|2.
Substituting this into (5.3) gives

dV
(
x(t)

)
�

[
K − 2

∣∣x(t)
∣∣2 + ∣∣x(t − τ)

∣∣2]dt

+
(

n∑
i=1

0.5x0.5
i (t)

n∑
j=1

σij

(
xj (t) − x̄j

))
dw(t).

It then follows that

0 � V
(
x(0)

) + Kt − 2E

t∫
0

∣∣x(s)
∣∣2 ds + E

t∫
0

∣∣x(s − τ)
∣∣2 ds

= V
(
x(0)

) +
0∫

−τ

∣∣x(s)
∣∣2 ds + Kt −

t∫
0

E
∣∣x(s)

∣∣2 ds.

This implies immediately that

lim sup
t→∞

1

t

t∫
0

E
∣∣x(s)

∣∣2 ds � K

as required. �

6. Stochastic delay Lotka–Volterra food chain
Gard [6, Example 6.2, p. 174] considered the Lotka–Volterra system of food chain
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diate
6]

.2) is

tions

lterra
ẋ1(t) = x1(t)
[
b1 − a11x1(t) − a12x2(t)

]
,

ẋ2(t) = x2(t)
[−b2 + a21x1(t) − a22x2(t) − a23x3(t)

]
,

ẋ3(t) = x3(t)
[−b3 + a32x2(t) − a33x3(t)

]
, (6.1)

wherex1, x2, andx3 represent, respectively, the population densities of prey, interme
predator, and top predator. In this example, thebi andbij are positive constants. Gard [
showed that an equilibrium̄x = (x̄1, x̄2, x̄3)

T exists inRn+ if

b1 − (a11/a21)b2 − [
(a11a22 + a12a21)/a21a32

]
b3 > 0. (6.2)

He also showed that the equilibrium is globally asymptotically stable as long as (6
satisfied.

Let us now modify this example by taking into account the time delay of interac
between species. In this case, the system above becomes

ẋ1(t) = x1(t)
[
b1 − a11x1(t) − a12x2(t − τ)

]
,

ẋ2(t) = x2(t)
[−b2 − a22x2(t) + a21x1(t − τ) − a23x3(t − τ)

]
,

ẋ3(t) = x3(t)
[−b3 − a33x3(t) + a32x2(t − τ)

]
. (6.3)

That is, in the matrix form,

ẋ(t) = diag
(
x1(t), x2(t), x3(t)

)[
b + Ax(t) + Bx(t − τ)

]
, (6.4)

where

x(t) =

 b1

−b2
−b3


 , A =


 −a11 0 0

0 −a22 0
0 0 −a33


 ,

B =

 0 −a12 0

a21 0 −a23
0 a32 0


 .

Under (6.2), the delay equation (6.4) has an equilibriumx̄ = (x̄1, x̄2, x̄3)
T in Rn+, the same

as Eq. (6.1). We may therefore rewrite Eq. (6.4) as

ẋ(t) = diag
(
x1(t), x2(t), x3(t)

)[
A

(
x(t) − x̄

) + B
(
x(t − τ) − x̄

)]
. (6.5)

Taking the environmental noise into account, we may replace the ratebi by an average
value plus a random fluctuation term, say

bi + σii(xj − x̄j )ẇ(t), 1� i � 3,

whereσii ’s are positive constants. As a result, we have a stochastic delay Lotka–Vo
model of food chain

dx(t) = diag
(
x1(t), x2(t), x3(t)

)
([ ( ) ( )] ( ) )
× A x(t) − x̄ + B x(t − τ) − x̄ dt + σ x(t) − x̄ dB(t) , (6.6)
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ne.

oise)
noise
bally

mments.
whereσ = diag(σ11, σ22, σ33). For illustration, we demonstrate how Theorem 4.3 can
applied to show the globally asymptotic stability of the equilibrium with probability o
For this purpose, we seek positive numbersc1, c2, c3 andθ such thatλmax(H) � 0, where

H = 1

2

[
C̄A + AT C̄ + σT C̄X̄σ

] + 1

4θ
C̄BBT C̄ + θI,

while we note that condition (4.6) is already satisfied. Here, as before,C̄ = diag(c1, c2, c3).
In particular, if we set

c1 = 1

a11
, c2 = 1

a22
, c3 = 1

a33
, θ = 1

2
,

we then have

λmax(H) � −1

2
+ 1

2
λmax

(
σT C̄X̄σ

) + 1

2
λmax

(
C̄BBT C̄

)
.

It is easy to compute that

λmax
(
σT C̄X̄σ

) = max

{
x̄1σ

2
11

a11
,
x̄2σ

2
22

a22
,
x̄3σ

2
33

a33

}
and

λmax
(
C̄BBT C̄

)
� ĉλmax

(
BBT

) = ĉ
[(

a2
12 + a2

32

) ∨ (
a2

21 + a2
23

)]
,

where

ĉ = 1

a2
11

+ 1

a2
22

+ 1

a2
33

.

We hence haveλmax(H) � 0 if

max

{
x̄1σ

2
11

a11
,
x̄2σ

2
22

a22
,
x̄3σ

2
33

a33

}
+ ĉ

[(
a2

12 + a2
32

) ∨ (
a2

21 + a2
23

)]
� 1. (6.7)

By Theorem 4.3, we can therefore conclude that the equilibriumx̄ is globally asymptoti-
cally stable with probability one if (6.7) is satisfied.

It is useful to observe that condition (6.7) implies that

ĉ
[(

a2
12 + a2

32

) ∨ (
a2

21 + a2
23

)]
� 1 (6.8)

and

σ 2
ii � aii

x̄i

(
1− ĉ

[(
a2

12 + a2
32

) ∨ (
a2

21 + a2
23

)])
, 1� i � 3. (6.9)

Condition (6.8) guarantees that the equilibrium of the delay equation (6.3) (without n
is globally asymptotically stable while condition (6.9) gives the upper bound for the
so that the equilibrium of the stochastic delay equation (6.6) will remain to be glo
asymptotically stable with probability one.
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