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1 Introduction

Jump linear system

ẋ(t) = A(r(t))x(t). (1.1)

Here x(t) is in general referred to as the state and r(t) is regarded as

the mode which is a Markov chain taking values in S = {1, 2, · · · , N}.

In its operation, the hybrid system will switch from one mode to

another according to the law of the Markov chain.

Ref: Costa et al. [6], Ji et al. [10, 11] and Mariton [26]

Hybrid SDEs

dx(t) = f (x(t), r(t), t)dt + g(x(t), r(t), t)dB(t). (1.2)

Ref: Basak et al. [3], Ghosh et al.[7, 8], Mao [24], Shaikhet [29], Mao

et al. [25].
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Stochastic stabilization and destabilization

The underlying system is described by a hybrid ordinary differential

equation

ẋ(t) = f (x(t), t, r(t)). (1.3)

Partial observations

It happens often that the system is observable only when it operates

in some modes but not all. Accordingly, in these modes one can design

a feedback controller based on the observations in order to stabilize

or destabilize the given system (1.3).

Question:

Can we stabilize or destabilize the given hybrid system (1.3) if we can

only partially control the system?
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2 Preliminaries

Let w(t), t ≥ 0, be an m-dimensional Brownian motion.

Let r(t), t ≥ 0, be a right-continuous Markov chain taking values in

a finite state space S = {1, 2, · · · , N} with generator Γ = (γij)N×N

given by

P{r(t + ∆) = j|r(t) = i} =

 γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j if i 6= j

while

γii = −
∑
j 6=i

γij.

Assume that w(t) and r(t) are independent and that the Markov

chain is irreducible. The algebraic interpretation of irreducibility is

rank(Γ) = N−1. Under this condition, the Markov chain has a unique

stationary (probability) distribution π = (π1, π2, · · · , πN) ∈ R1×N

which can be determined by solving the following linear equation

πΓ = 0

subject to
N∑

j=1

πj = 1 and πj > 0 ∀j ∈ S.
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Nonlinear Hibrid SDEs

dx(t) = f (x(t), t, r(t))dt + g(x(t), t, r(t))dw(t) (2.1)

on t ≥ 0 with the initial value x(0) = x0 ∈ Rn, where

f : Rn × R+ × S → Rn and g : Rn × R+ × S → Rn×m.
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3 Stability

Assumption 3.1 For each i ∈ S, there are constant triples αi,

ρi, and σi such that

xTf (x, t, i) ≤ αi|x|2,

|g(x, t, i)| ≤ ρi|x|, (3.1)

|xTg(x, t, i)| ≥ σi|x|2

for all (x, t) ∈ Rn × R+.

Theorem 3.2 (Mao [24]) Let Assumption 3.1 hold and assume

that for some u ∈ S,

γiu > 0 ∀i 6= u. (3.2)

Then equation (2.1) is almost surely exponential stable if∣∣∣∣∣∣∣∣∣∣∣∣∣

−(α1 + 0.5ρ2
1 − σ2

1) −γ12 · · · −γ1N

−(α2 + 0.5ρ2
2 − σ2

2) −γ22 · · · −γ2N

... ... · · · ...

−(αN + 0.5ρ2
N − σ2

N) −γN2 · · · −γNN

∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0. (3.3)
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Theorem 3.3 Under Assumption 3.1, the solution of equation

(2.1) satisfies

lim sup
t→∞

1

t
log(|x(t; x0)|) ≤

N∑
j=1

πj(αj + 0.5ρ2
j − σ2

j ) a.s. (3.4)

for all x0 ∈ Rn. In particular, the nonlinear hybrid SDE (2.1) is

almost surely exponentially stable, if

N∑
j=1

πj(αj + 0.5ρ2
j − σ2

j ) < 0. (3.5)

Remark 3.4 Comparing the two theorems above, we first observe

that Theorem 3.3 does not require condition (3.2). We have also

shown that the seemingly different conditions (3.5) and (3.3) are

in fact equivalent under the additional condition (3.2). In other

words, Theorem 3.3 is an improvement of the known result The-

orem 3.2.
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4 Instability

Assumption 4.1 For each i ∈ S, there are constant triples αi,

ρi, and σi such that

xTf (x, t, i) ≥ αi|x|2,

|g(x, t, i)| ≥ ρi|x|, (4.1)

|xTg(x, t, i)| ≤ σi|x|2

for all (x, t) ∈ Rn × R+.

Theorem 4.2 Under Assumption 4.1, the solution of equation

(2.1) satisfies

lim inf
t→∞

1

t
log(|x(t)|) ≥

N∑
j=1

πj(αj + 0.5ρ2
j − σ2

j ) a.s. (4.2)

as long as the initial value x0 6= 0. In particular, the nonlinear

hybrid SDE (2.1) is almost surely exponentially unstable if

N∑
j=1

πj(αj + 0.5ρ2
j − σ2

j ) > 0.
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5 An Example

Example 5.1 Consider a real-valued process given by (2.1) with the

following specifications. Let r(t) be a 2-state Markov chain with a

generator Q =

−λ λ

µ −µ

, and

f (x, t, 1) = x(1+sin2 x), f (x, t, 2) = x cos x, g(x, t, 1) = x, g(x, t, 2) = 2x.

Then the stationary distribution of the Markov chain is (π1, π2) =

(µ/(λ + µ), λ/(λ + µ)). Assumption 3.1 is satisfied with α1 = 2,

α2 = 1, ρ1 = 1, ρ2 = 2, σ1 = 1, and σ2 = 2. Thus

2∑
i=1

πi(αi + 0.5ρ2
i − σ2

i ) =
3π1

2
− π2 =

3µ− 2λ

2(λ + µ)
.

By Theorem 3.3, the system is almost surely exponentially stable if

3µ < 2λ. On the other hand, we also note that Assumption 4.1 is

satisfied with α1 = 1, α2 = 0, ρ1 = 1, ρ2 = 2, σ1 = 1, and σ2 = 2.

Thus
2∑

i=1

πi(αi + 0.5ρ2
i − σ2

i ) =
π1

2
− 2π2 =

µ− 4λ

2(λ + µ)
.

By Theorem 4.2, the system is almost surely exponentially unstable

if µ > 4λ.
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6 Necessary and Sufficient Conditions for Linear Hy-

brid SDEs

dx(t) = A(r(t))x(t)dt +

m∑
k=1

Bk(r(t))x(t)dwk(t) (6.1)

for t ≥ 0, where A(·) and Bk(·)’s are all mappings from S to Rn×n.

Write the solution as x(t; x0) = x(t). Recall that whenever the initial

value x0 6= 0, the solution x(t) will never reach zero with probability

one. Introduce a new process

s(t) =
x(t)

|x(t)|
.

By virtue of the Itô’s formula,

ds(t) =
[
A(r(t))s(t)−

m∑
k=1

[sT (t)Bk(r(t))s(t)]Bk(r(t))s(t)

+
(
− sT (t)A(r(t))s(t) +

1

2

m∑
k=1

[
− |Bk(r(t))s(t)|2

+3|sT (t)Bk(r(t))s(t)|2
])

s(t)
]
dt

+

m∑
k=1

(
Bk(r(t))s(t)− [sT (t)Bk(r(t))s(t)]s(t)

)
dwk(t). (6.2)

It is thus clear that (s(t), r(t)) is a Markov process in the phase space

Sn × S, where Sn = {x ∈ Rn : |x| = 1}. Let us now impose another

assumption.
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Assumption 6.1 The Markov process (s(t), r(t)) is ergodic and

its unique stationary distribution on Sn×S is denoted by P (ds, j).

Theorem 6.2 Let Assumption 6.1 hold and set

λ =

N∑
j=1

∫
Sn

[
sTA(j)s +

1

2

m∑
k=1

(
|Bk(j)s|2 − 2|sTBk(j)s|2

)]
P (ds, j).

Then the linear hybrid SDE (6.1) is almost surely exponentially

stable (resp., unstable) if and only if λ < 0 (resp., λ > 0).
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7 Stochastic Stabilization

The given system is the hybrid ODE

ẋ(t) = f (x(t), t, r(t)). (7.1)

Dcompose S into two subsets S1 and S2, namely S = S1 ∪ S2, where

for each mode i ∈ S1 the ODE is not observable and hence cannot be

stabilized by feedback control, but it can be stabilized for each i ∈ S2.

The question is: Can we stabilize the hybrid ODE (7.1) if we can only

control the partial system?

More precisely, let us consider the controlled stochastic system

dx(t) = f (x(t), t, r(t))dt + u(t, r(t))dw(t), (7.2)

where u(t, i) ≡ 0 for i ∈ S1 while u(t, i) = u(x(t), i) is a feedback

control for i ∈ S2. Our aim is to design the control u(x(t), i) for

i ∈ S2 only so that the controlled system (7.2) is stabilized.

To make it simple, we consider the linear feedback control of the form

u(x, i) = (B1,ix, B2,ix, · · · , Bm,ix). (7.3)

Thus the controlled system (7.2) becomes

dx(t) = f (x(t), t, r(t))dt +

m∑
k=1

Bk,r(t)x(t)dwk(t), (7.4)

where Bk,i = 0 whenever i ∈ S1 while the other Bk,i’s are all n × n
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matrices to be designed in order to make the controlled system (7.4)

become stable.

Clearly not any given hybrid ODE (7.1) can be stabilized by stochastic

control and we need to impose some conditions on it.

Assumption 7.1 There is a positive constant K such that

|f (x, t, i)| ≤ K|x| ∀(x, t, i) ∈ Rn × R+ × S.

Theorem 7.2 Let Assumption 7.1 hold. Assume that for each

i ∈ S2, the matrices Bk,i in the controller have the property that

m∑
k=1

|Bk,ix|2 ≤ ai|x|2 and
m∑

k=1

|xTBk,ix|2 ≥ bi|x|4, ∀x ∈ Rn

(7.5)

where ai and bi are some nonnegative constants. Then the solu-

tion of the controlled system (7.4) has the property that

lim sup
t→∞

1

t
log |x(t; x0)| ≤ K +

∑
i∈S2

πi(0.5ai − bi) a.s. (7.6)

for any x0 ∈ Rn. In particular, if K+
∑

i∈S2
πi(0.5ai−bi) < 0 then

the controlled system (7.4) is almost surely exponentially stable.
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Theorem 7.2 ensures that there are many choices for the matrices Bk,i

in order to stabilize the given hybrid system (7.1).

Example 7.3 Let

Bk,i = θk,iI, 1 ≤ k ≤ m, i ∈ S2,

where I is the n× n identity matrix and θk,i are constants. Then the

controlled system (7.4) becomes

dx(t) = f (x(t), t, r(t))dt +

m∑
k=1

θk,r(t)x(t)dwk(t), (7.7)

where we set θk,i = 0 for i ∈ S1 and 1 ≤ k ≤ m. Note in this case

that for each i ∈ S2,

m∑
k=1

|Bk,ix|2 =
( m∑

k=1

θ2
k,i

)
|x|2 and

m∑
k=1

|xTBk,ix|2 =
( m∑

k=1

θ2
k,i

)
|x|4.

By Theorem 7.2 we can conclude that the solution of the controlled

system (7.7) satisfies

lim sup
t→∞

1

t
log |x(t; x0)| ≤ K − 0.5

∑
i∈S2

πi

( m∑
k=1

θ2
k,i

)
a.s.

Recalling that the stationary probabilities πi > 0 for all i ∈ S, given

any K > 0, one can always choose the constants θk,i (i ∈ S2) suffi-

ciently large for

0.5
∑
i∈S2

πi

( m∑
k=1

θ2
k,i

)
> K

in order to make the controlled system (7.7) become stable.
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Example 7.4 For each pair of i ∈ S2 and 1 ≤ k ≤ m, choose a

symmetric positive definite matrix Dk,i such that

xTDk,ix ≥
3

4
‖Dk,i‖|x|2.

Obviously, there are many such matrices. Let θ be a constant and

Bk,i = θDk,i. Then the controlled system (7.4) becomes

dx(t) = f (x(t), t, r(t))dt +

m∑
k=1

θDk,r(t)x(t)dwk(t), (7.8)

where we set Dk,i = 0 for i ∈ S1 and 1 ≤ k ≤ m. Note that for each

i ∈ S2,
m∑

k=1

|Bk,ix|2 ≤ θ2
( m∑

k=1

‖Dk,i‖2
)
|x|2

and
m∑

k=1

|xTBk,ix|2 ≥
9θ2

16

( m∑
k=1

‖Dk,i‖2
)
|x|4

for all x ∈ Rn. By Theorem 7.2, the solution of the controlled system

(7.8) has the property that

lim sup
t→∞

1

t
log |x(t; x0)| ≤ K − θ2

16

∑
i∈S2

πi

( m∑
k=1

‖Dk,i‖2
)

a.s.

If we choose θ sufficiently large such that

θ2 >
16K∑

i∈S2
πi

( ∑m
k=1 ‖Dk,i‖2

),

then the controlled system (7.8) is almost surely asymptotically stable.
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Theorem 7.5 Given any nonlinear hybrid system (7.1) satisfy-

ing Assumption 7.1, one can always design a linear controller

u(x, i) of the form (7.3) for the partial modes i ∈ S2 so that the

controlled system (7.4) becomes stable.
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8 Stochastic Destabilization

Given a nonlinear stable hybrid system (7.1), can we design a linear

controller u(x, i) of the form (7.3) for those modes i ∈ S2 only so that

the controlled system (7.4) become unstable?

Theorem 8.1 Let Assumption 7.1 hold. Assume that for each

i ∈ S2, the matrices Bk,i in the controller (7.3) satisfy

m∑
k=1

|Bk,ix|2 ≥ ai|x|2 and
m∑

k=1

|xTBk,ix|2 ≤ bi|x|4, ∀x ∈ Rn

(8.1)

where ai and bi are some nonnegative constants. Then the solu-

tion of the controlled system (7.4) satisfies

lim sup
t→∞

1

t
log |x(t; x0)| ≥ −K +

∑
i∈S2

πi(0.5ai − bi) a.s. (8.2)

for any x0 6= 0. In particular, if
∑

i∈S2
πi(0.5ai− bi) > K then the

controlled system (7.4) is almost surely exponentially unstable.
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The question now becomes: Can we find matrices Bk,i so that∑
i∈S2

πi(0.5ai − bi) > K?

Case 1: The dimension of the state space n is an even

number

For each i ∈ S2, let θi be a constant and define

B1,i =



0 θi

−θi 0

. . .

0 θi

−θi 0


,

but set Bk,i = 0 for 2 ≤ k ≤ m. The controlled system (7.4) becomes

dx(t) = f (x(t), t, r(t))dt + θr(t)



x2(t)

−x1(t)

...

xn(t)

−xn−1(t)


dw1(t), (8.3)

where we set θi = 0 for i ∈ S1. Note that for each i ∈ S2,

m∑
k=1

|Bk,ix|2 = |B1,ix|2 = θ2
i |x|2

and
m∑

k=1

|xTBk,ix|2 = |xTB1,ix|2 = 0.

18



Hence, by Theorem 8.1, the solution of the controlled system (8.3) has

the property that

lim sup
t→∞

1

t
log |x(t; x0)| ≥ −K +

∑
i∈S2

0.5πiθ
2
i a.s. (8.4)

for any x0 6= 0. Clearly we can choose θi (i ∈ S2) sufficiently large

for
∑

i∈S2
0.5πiθ

2
i > K so that the controlled system (8.3) becomes

unstable.

Case 2: The dimension of the state space n is an odd

number and n ≥ 3

Let the dimension of the Brownian motion m ≥ 2. For each i ∈ S2,

let θi be a constant. Define

B1,i =



0 θi

−θi 0

. . .

0 θi

−θi 0

0


,
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B2,i =



0

0 θi

−θi 0

. . .

0 θi

−θi 0


but set Bk,i = 0 for 2 < k ≤ m. So the controlled system (7.4)

becomes

dx(t) = f (x(t), t, r(t))dt + θr(t)



x2(t)

−x1(t)

...

xn−1(t)

−xn−2(t)

0


dw1(t)

+ θr(t)



0

x3(t)

−x2(t)

...

xn(t)

−xn−2(t)


dw2(t), (8.5)
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where we set θi = 0 for i ∈ S1. Note that for each i ∈ S2,

m∑
k=1

|Bk,ix|2= |B1,ix|2 + |B2,ix|2

= θ2
i (x

2
1 + · · · + x2

n−1) + θ2
i (x

2
2 + · · · + x2

n) ≥ θ2
i |x|2

and
m∑

k=1

|xTBk,ix|2 = |xTB1,ix|2 + |xTB2,ix|2 = 0.

Hence, by Theorem 8.1, the solution of the controlled system (8.5) has

the property that

lim sup
t→∞

1

t
log |x(t; x0)| ≥ −K +

∑
i∈S2

0.5πiθ
2
i a.s. (8.6)

for any x0 6= 0. Clearly we can choose θi (i ∈ S2) sufficiently large

for
∑

i∈S2
0.5πiθ

2
i > K so that the controlled system (8.5) becomes

unstable. Summarizing these results, we state a general theorem in

what follows.

Theorem 8.2 Given any n-dimensional nonlinear hybrid system

(7.1), one can always design a linear controller u(x, i) of the form

(7.3) for the partial modes i ∈ S2 so that the controlled system

(7.4) become unstable provided Assumption 7.1 is satisfied and

the dimension n ≥ 2.
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