Outline Solutions of Honours Class 11.949 Mathematics of Financial Derivatives Section 5

1. If $S \geq E$, then $\max (E-S, 0)=0$, $\max (S-E, 0)=S-E$, we get

$$
S+\max (E-S, 0)-\max (S-E, 0)=S+0-(S-E)=E
$$

If $S<E$, then $\max (E-S, 0)=E, \max (S-E, 0)=0$, we get

$$
S+\max (E-S, 0)-\max (S-E, 0)=S+E-0=E
$$

2. Since today $S+P-C=100=E>E e^{-0.05}$, you sell one asset to get 80 and sell one put option to get 30 , you buy one call option at 10 . The volume of the portfolio is 100 , putting this in the bank you will get 105 at $T=1$ (more than E at $\mathrm{T}=1$). The profit is 5.
3. (a) If $V(S, t)=A S$, then

$$
\frac{\partial V}{\partial t}=0, \frac{\partial V}{\partial S}=A, \frac{\partial^{2} V}{\partial S^{2}}=0
$$

So the right side of $\operatorname{PDE}(8)=0+0+r S A-r S A=0 . \Delta=A$. That the number of stocks that you need to hold in a portfolio which earns the risk-free rate is constant throughout the life-time of the option.
(b) If $V(S, t)=A e^{r t}$, then

$$
\frac{\partial V}{\partial t}=A r e^{r t}, \frac{\partial V}{\partial S}=0, \frac{\partial^{2} V}{\partial S^{2}}=0
$$

So the right side of $\operatorname{PDE}(8)=A r e^{r t}+0+0-r A e^{r t}=0 . \Delta=0$. This is the case when you save A in a deposit account with the fixed interest rate r.

