Honours Class 11.949 Mathematics of Financial Derivatives
Section 2: Random Variables

If we roll a fair die, each of the six possible outcomes 1,2,...,6 is equally
likely. So we say that each outcome has probability 1/6. We can generalise this
idea to the case of a discrete random wvariable X that takes values from a finite
set of numbers {x1,zs,...,2,}. Associated with the random variable X are a
set of probabilities {p1, pa, ..., pm} such that x; occurs with probability p;. For
this to make sense we require

pi > 0 for all i, (negative probabilities not allowed),
Y. pi=1, (probabilities add up to 1).

The mean, or expected value, of X, denoted E(X), is defined by
E(X) := szpz
i=1

Note that for the die example above we have

1 1 1 641

which is intuitively reasonable. The variance of X is defined by
Var(X) = E((X — E(X))?).

This measures the amount by which X tends to vary from its mean. The square
root of the variance, \/Var(X), is called the standard deviation of X.

Example The random variable X that takes the value 1 with probability p
(where 0 < p < 1) and takes the value 0 with probability 1 — p is called the
Bernoulli random variable with parameter p. (Here, m = 2, z; = 1, 29 = 0,
p1 = p and p, = 1 — p.) For this random variable we have

E(X) =1p+0(1 —p) =p.

The random variable (X —E(X))? takes the value (1 —p)? with probability p and
p? with probability 1 — p. Hence

Var(X) = E(X —E(X))*)=(1-p)’p+p*(1—p)=p—p>. O

Generally, if X and Y are discrete random variables, then we may create new
random variables by combining them, e.g. X +Y, X2 +5sin(Y), etc.
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A continuous random variable may take any value in R. In this course, con-
tinuous random variables are characterised by their density functions. If X is a
continuous random variable then we assume that there is a real-valued density
function f such that the probability of ¢ < X < b is found by integrating f(x)
from x = a to x = b; that is,

Pla< X <b) = / f(z)dz. (1)

For this to make sense we require
f(z) >0 for all z, (negative probabilities not allowed)
[, f(@)dz =1, (density integrates to 1).
The mean, or expected value, of X, denoted E(X), is defined by
E(X) := / zf(z)dw.

[Note that in some cases the mean is not defined—the infinite integral does not
exist. In this course, whenever we write E we are implicitly assuming that the
integral does exist.]

A very useful result about expected values is that if we apply a function h to
a continuous random variable X then

B(0) = [ ho)f (@), @)

o0

As in the discrete case, the variance is defined by Var(X) := E((X —E(X))?).

Example The random variable X with density function

[ (b—a)t fora<z<b
fle) = { 0 otherwise (3)

is said to have a uniform distribution over (a,b). It has mean

E(X):/ooxf(x)dx - bia/ab:vdx

1 [22]°
" b—a [5} a
_a+b
= —
Similarly, it can be shown that E(X?) = (a* + ab+ b?)/3 (see Exercise 4). O



Suppose X and Y are two random variables. A fundamental identity is
EX +Y)=EX)+EY). (4)

(The mean of the sum of the sum of the means.) We omit a proof of this result
as the details are not necessary for this class.

If we say that the two random variables X and Y are independent, then
this has an intuitively reasonable interpretation—the value taken by X does not
depend on the value taken by Y. To give the classical, formal definition of
independence requires more background theory than we have given here, but an
equivalent condition is

E(g(X)h(Y)) =E(g(X))E(h(Y)), forallg,h:R—R
In particular, taking g and A to be the identity function, we have
X and Y independent = E(XY) =E(X)E(Y). (5)

Note that E(XY) = E(X)E(Y) does not hold, in general, when X and Y are
not independent. For example, taking X as in Exercise 3 and ¥ = X we have
E(X?) # (E(X))*.

By far the most important random variable for our purposes is the standard
normal random variable, which has density function

1 z?

This “bell-shaped curve” is plotted in Figure 1. For this random variable, we
have E(X) = 0 and Var(X) = 1. Hence, we also refer to this as the N(0,1)
random variable (IV stands for normal, 0 is the mean and 1 is the variance). The
general N(u,0?) random variable characterised by the density function

(6)

f@) = S 7
V2mo?
has mean p and variance o2 (see Exercise 6).

One useful property of normal random variables is that if X; and X, are
independent and normal with means p; and py and variances o? and o2, then
X1 + X, is normal with mean p; + po and variance o? + o2.

A fundamental, beautiful and far-reaching result in probability theory says
that the sum of a large number of independent, identically distributed (iid) ran-
dom variables will be approximately normal. This is the Central Limit Theorem.
To be more precise, let X7, X5, X3.... be a sequence of iid random variables, each
with mean p and variance o2, and let

=1
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Figure 1: Density function for the N(0,1) random variable.

Then the Central Limit Theorem says that for large n, S, can be approximated by
a N(nu,no?) random variable. In other words (S, —nu)/(o+/n) is approximately
N(0,1). Hence, for any x we have

S, — r o1 z?
P(ng>—>/ e_z2dx, as n — 00.
o\/n oo V2T

Computing with random numbers

Computers are deterministic—they do exactly what they are told and hence are
completely predictable. This is generally a good thing, but it is at odds with the
idea of generating random numbers. In practice, however, it is usually sufficient
to work with pseudo-random numbers. These are collections of numbers that
are produced by a deterministic algorithm and yet seem to be random in the
sense that, en masse, they have appropriate statistical properties. The topic of
finding algorithms to generate large sequences of random numbers and testing
their quality is still an active research area.

MATLAB has two built-in functions for random number generation:

rand aims to produce samples from a uniform (0, 1) distribution,
randn aims to produce samples from a N (0, 1) distribution.

Asking for 10 samples from rand and randn gave us the numbers in Table 1.
The samples from rand appear to be evenly spread across the interval (0,1) and
those from randn seem to be clustered around zero, but, of course, this is saying
very little.



rand randn
0.9528 | 0.8644
0.7041 | 0.0942
0.9539 | -0.8519
0.5982 | 0.8735
0.8407 | -0.4380
0.4428 | -0.4297
0.8368 | -1.1027
0.5187 | 0.3962
0.0222 | -0.9649
0.3759 | 0.1684

Table 1: Numbers from rand and randn.

rand randn

M Hm T M o

102 [ 0.5020 0.0811 | —0.0665 0.9110
102 | 0.5034 0.0815 | —0.0462 1.0235
10* | 0.5011 0.0823 | 0.0014 0.9925
105 | 0.4996 0.0832 | 0.0056 1.0035

Table 2: Computed mean and variance from M samples of rand and randn.

We will test rand and randn further by taking M samples {&}, and com-

puting the sample mean
| M
Mpm = i ; &i

and the sample variance!

1
2 _ 2
Op 2= M—1 ?:1 (& —MM) .

This produces the results in Table 2. We see that as M increases, the sampled
means and variances for rand are generally getting closer to the true values 0
and 1/12 & 0.833 for a uniform distribution over (0,1) (Exercise 4 asks you find
the true variance). Similarly, the sampled means and variances for randn are
converging to 0 and 1.

'You might expect the sample variance to be computed as 7 Zi]\il(& — par)?; however,
it can be shown that scaling by M — 1 instead of M is better. See, for example, the text by
Morgan cited at the end of this section.



As a further test on rand, we divide the interval [0, 1] into subintervals (or
bins) of length A = 0.05 and count how many samples lie in each subinterval. We
take M samples and let N; denote the number of samples in [iA, (i + 1)A]. If we
approximate the probability of X taking a value in the subinterval [iA, (i + 1)A]
by the relative frequency with which this happened, then we have

Ni

P(iA < X < (i+1)A) = . 8)

On the other hand, we know from (1) that, for a random variable X with density

f (=),

(i+1)A
Mnggu+nm:/ f(@)de. )

N
Letting z; denote the midpoint of the subinterval [iA, (i + 1)Az] we may use the
Riemann sum approximation

(+1)A
[t~ A, (10)
iA

(Here, we have approximated the area under a curve by a the area of suitable
rectangle—draw a picture to see this.) Using (8)—(10), we see that plotting
N;/(AM) against z; should give an approximation to the density function values
f(x;). In Figure 2 we do this for A = 0.05 and M = 10%,10%,10*,10°. We see
that as M increases the plot gets closer to a uniform (0, 1) density.
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Figure 2: Sampled approximation to the density function for rand.

In Figure 3 we perform a similar experiment with randn, and the familiar
bell-shaped curve emerges.



1000 samples 10000 samples

05 0.5
0.4 0.4
03 0.3
0.2 0.2
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% -2 0 2 4 % -2 0 2 4

Figure 3: Sampled approximation to the density function for randn.

Note that we will look more closely at numerical simulations with MATLAB
later in the course.

Another computational example

Figure 4 shows the remarkable power of the Central Limit Theorem. Here we used
MATLAB’s rand to generate samples {£;}" ; from a uniform (0, 1) distribution,
with n = 10%. These were combined to give samples of the form

> & —
ovn

where y = L and 02 = 1/12. We repeated this M = 10* times and produced
an approximate density function in the manner described for Figures 2 and 3.
We see from Figure 4 that even though each X; is nothing like a normal random
variable, the overall sum (3" | X; — nu) /(oy/n) behaves normally. [0

An awareness of the Central Limit Theorem has lead scientists to make the
following logical step: real-life systems are subject to a range of external influences
that can be reasonably approximated by iid random variables and hence the
overall effect can be reasonably modelled by a single normal random variable
with an appropriate mean and variance. This is why normal random variables
are ubiquitous in stochastic modelling.
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Figure 4: Tllustration of the Central Limit Theorem.
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A very readable essay on pseudo-random number generation (and a wonderful
collection of probability problems, with accompanying MATLAB programs) can
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Quotes:
Any one who considers arithmetical methods of producing random digits
is, of course, in a state of sin. For ... there is no such thing as a
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random number—there are only methods to produce random numbers,
and a strict arithmetic procedure of course is not such a method.
John von Neumann, 1951

By now, you'll have realised that to make a profit when buying all

the ticket combinations, you have to rely on not sharing the higher tier prizes
(particularly the jackpot and 5+bonus prizes) with too many other tickets.
This is such a risk that it effectively rules out it ever being tried in real life.
Richard K. Lloyd, commenting on the UK National Lottery

Exercises
1) Suppose that X is a discrete random variable. Show that

E(aX) = oE(X), for any a € R (11)

Now suppose that X is a continuous random variable with density function f.
Recall that the density function is characterised by (1). What is the density
function of aX, for &« € R? Show that (11) holds.

2) Using (11), show that Var(X) = E(X?) — E(X)? and also show that
Var(aX) = o*Var(X) for any « € R.
3) The continuous random variable X with density function

de= ™ forz >0
f(x)—{ 0 forz<O0

(where A > 0) is said to have the exponential distribution with parameter \.
Show that in this case E(X) = ;. Show also that E(X?) = 2/A? and hence find
an expression for Var(X).

4) Show that if X has a uniform distribution over (a,b) then E(X?) = (a® +
ab + b?)/3 and hence find Var(X).

5) [Note that throughout this class you may use without proof the fact that
[ e=*/%dz = \/27.] Suppose that X is N(0,1). Verify that E(X) = 0. From
(2), the second moment of X, E(X 2) satisfies

E(X?) z2e .

Using integration by parts, show that ]E(XQ) = 1, and hence that Var(X) = 1.
From (2) again, for any integer p > 0 the pth moment of X, E(X?), satisfies

e 2.

E(X?) = \/ﬁ /

Show that E(X?3) = 0 and E(X*) = 3 and find a general expression for E(XP).

6) From the definition (7) of its density function, verify that a N(u,o?) ran-
dom variable has mean p and variance o2.
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