Honours Class 11.949 Mathematics of Financial Derivatives
Section 3: Brownian Motion and Stochastic Integrals

Brownian motion is at the heart of most models in finance. Its name comes
from the Scottish botanist Robert Brown who, in around 1827, reported experi-
mental observations involving the erratic behaviour of a pollen grain when bom-
barded by (relatively small and effectively invisible) water molecules. A mathe-
matical theory for Brownian motion has since been developed, with famous names
such as Albert Einstein and Norbert Weiner making significant contributions.

We now give the classical definition that sets up Brownian motion as a stochas-
tic process, that is, a random variable that changes with time.

Definition Brownian motion, or the standard Wiener process, over [0,T] is
a random variable W (t) that depends continuously on ¢ € [0, 7] and satisfies the
following three conditions.

1. W(0) = 0.

2. For 0 < s < t < T the random variable given by the increment W (t) — W (s)
is N(0,t — s); equivalently, W (t) — W(s) is v/t — s N(0, 1).

3. For0 < s<t<u<wv<T the increments W(t) — W(s) and W(v) — W (u)
are independent. [

It follows immediately from these conditions that W (t) is N(0,¢)—see exer-
cise 1.

For computer simulations, it is useful to consider discretized Brownian motion,
where W (t) is specified at discrete ¢ values. We thus set At = T/N for some
positive integer N and let W; denote W (t;) with ¢; = jA¢. Condition 1 says
Wy = 0 and conditions 2 and 3 tell us that

W; =W, +dW,, j=1,2,...,N, (1)

where each dW; is an independent random variable of the form v/AtN (0, 1).

Figure 1 shows an example of discretized Brownian motion computed over
[0,1] with N = 500. MATLAB’s random number generator randn was used to
generate N (0, 1) samples, and these were scaled by V/At to form the increments
dW;. Note that in Figure 1 we have used a solid line to join the discrete data
points Wj.

The path shown in Figure 1 looks very rough. We will formalise this roughness
in two senses: differentiability and variation.

To begin, we note that Brownian motion has a remarkable scaing property:
if W (t) is an example of Brownian motion then, for any fixed ¢ > 0,

V() = %W(c%) @)
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Figure 1: Discretized Brownian path.

is also an example of Brownian motion (see exercise 2). Now, consider the quan-
tity |W(¢)|/t. Since W(0) = 0, if W (t) were differentiable then |W(t)|/t would
converge to |W'(t)| as t — 0. Now, let t = 1/n*, where n is large. Since W (t)
and V(¢) have the same distributions we have

(WU, ) _p (WO, ),

1/n4 1/n4

Setting ¢ = n? in (2) we find

P(%>n> :P(%>n):P(|W(D|>%).

Putting this together, we have shown that

(W(/nh)| 1
P =P |W(1 — .
( i >n W(1)| > -
Since W (1) is N(0,1) (see exercise 1), the term on the right-hand side is the

probability that a N(0,1) random variable takes a value bigger than 1/n in
modulus. This probability clearly tends to 1 as n — oo. By considering the
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term on the left-hand side, we conclude that, with probability 1, W (¢) is not
differentiable at t = 0. A similar argument can be used to show that W(t) is
nowhere differentiable, with probability 1.

Another way of examining the roughness of Brownian motion is to consider
its variation. Note that for a continuously differentiable function, f € C'[0,T],
the Mean Value Theorem says that

f(t;) — f(tj—1) = Atf'(0;), for some 0; € (t;_1,1;).

It follows that the variation of f satisfies

Z|f ]1|—At2\f )| < NAtmax|f'(2)] = T max| f'(x)].

This shows that any f € Cl[(), T] has finite variation. To see whether Brownian
motion has a similar property we use the inequality

S0 09() ~ Wity = 3 aw? < (s 0wy )) S lawl. @)

=1

Now the random variable Z;-V:l(W(tj) — W(t;j—1))? has mean T and variance of
O(At) (see exercise 3). Hence, as At — 0 we would expect this random variable
to converge to the constant value 7. On the other hand, each dW; has mean
zero and variance At, so as At — 0 we would expect max;<j<y |[dW;| to converge
to the constant value 0. In order for the inequality (3) to hold it must therefore
be true that Z;Vﬂ |dW;| is unbounded, with probability 1, as At — 0. We thus
say that Brownian motion has infinite variation.

Although Brownian motion is rough, if we average over many paths, a smooth
curve may emerge. In Figure 2 we we evaluate the function u(W (t)) = exp(t +
1W(t)) along 1000 discretized Brownian paths. The average of u(W (t)) over these
paths is plotted with a solid linetype. Five individual paths are also plotted using
a dashed linetype. We see in Figure 2 that although u(W (t)) is non-smooth along
individual paths, its sample average appears to be smooth. In fact, the expected
value of (W (t)) turns out to be exp(9t/8); see exercise 4. In this experiment,
the maximum discrepancy between the sample average and the exact expected
value over all points ¢; was found to be 0.0504. Increasing the number of samples
to 4000 reduces this to 0.0268.

Stochastic integrals
Given a suitable function h, the integral fo t)dt may be approximated by

the Riemann sum
Zh J— 1 tj— 1) (4)

LThis can be made rigorous: hmAt—>0 ijl (W (t;) — W(tj—1))? = T with probability 1.
2This can be made rigorous: lima;—0 maxi<;j<n [dW;| = 0 with probability 1.
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Figure 2: The function u(W (t)) averaged over 1000 discretized Brownian paths
and along 5 individual paths.

where the discrete points t; = jAt were introduced above. In fact, the integral is
defined by taking the limit At — 0 in (4). In a similar manner, we may consider
a sum of the form

N
D At ) (W (ty) = W (t-)), (5)
j=1
which, by analogy with (4), can be regarded as an approximation to a stochastic

integral fOT h(t)dW (t). Now we are integrating h with respect to Brownian mo-
tion. Taking the limit At — 0 in (5) produces what is known as the It6 stochastic
integral.

Example If we take h(t) in (5) to be W(t), then the It6 stochastic integral
is the limiting case of

D W) (W (ty) —W(tj) = %Z (W () = W (tj1)* = (W(t;) — W(t;-1))]
= 3 | W(T)?-W(0)" - Z (W(t;) - W(tj—l))2> :



Now the term Z;VZI (W (t;) — W(t;_1))* has mean T and variance of O(At)-see
exercise 3. Hence, for small At we expect this random variable to be close to the
constant 7. This argument can be made precise, leading to

[ waaww =way -, )

for the Ito integral. [

It is interesting to note the presence of the —%T term on the right-hand side of
(6). This is an early warning that stochastic calculus and deterministic calculus
have some fundamental differences.

Stochastic Differential Equations
We recall now that a scalar, autonomous, ordinary differential equation (ODE)
over [0,7] in the form of an initial value problem may be written as

dy

dt
Here, f is a given scalar function and ¥, is a given initial condition. We could
also write this problem in integral form as

fy), y0) =y, 0<t<T. (7)

o) =+ [ Fly(s)ds, 0<t<T.

Completely analogously, we may consider the integral equation

Y(t) = Yo+ / F(¥(s)) ds + / oY (s)dW(s), 0<t<T.  (8)

Here, f and g are given scalar functions and the given initial condition Yj is a

random variable. The second integral on the right-hand side is an It stochastic

integral, as discussed above. A solution to the problem (8) is a stochastic process

(that is, a random variable depending upon t) that satisfies the integral equation

for all 0 <t <T. We refer to this problem as a stochastic differential equation.
It is usual to re-write (8) in differential equation form as

dY (t) = f(Y(1))dt + g(Y(8))dW (1), Y(0)=Y,, 0<t<T. 9)

This is nothing more than a compact way of saying that Y (¢) solves (8). (Note
that we are not allowed to write dWW (t)/dt, since Brownian motion is nowhere
differentiable with probability 1.) If ¢ = 0 and Yj is constant, then the problem
becomes deterministic and (9) reduces to the ordinary differential equation (7).

We will see that stochastic differential equations play a key role in mathemat-
ical finance, as they form the basic tool for modelling asset prices.

Notation
We mention here that the book by Wilmott, Howison and Dewynne uses X (¢) to
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denote Brownian motion. It is more standard to use either W (¢) or B(¢), and in
this course we use W (t).

References

We have glossed over many technical issues here, not least the questions of ex-
istence and uniqueness of Brownian motion. Many texts on probability and
stochastic processes have a chapter on Brownian motion and there are a variety
of ways to introduce the topic. A Markov Chain framework can be used to give
a rigorous and yet quite comprehensible introduction; see

Norris, J. R. Markov Chains, Cambridge, 1997, D 519.233 NOR, ISBN 0-521-
63396-6.

One of the most accessible texts that treats Brownian motion and stochastic
calculus rigorously is

Brzezniak, Z. and Zastawniak, T. Basic Stochastic Processes, Springer, 1999,
D 519.2 BRZ, ISBN 3-540-76175-6.

There are several web sites with Java applets to simulate Brown’s original
observations. A good one is at

http://www.math.rutgers.edu/ sontag/338/brownian-applet.html

Quotes:

Read about Brownian motion here
[http://xanadu.math.utah.edu/java/brownianmotion/1/]

but do not believe that Brown was English (he was from Scotland).
Ray Streater
http://www.mth.kcl.ac.uk/"streater/Brownianmotion.html

Exercises
1) Show that if W(t) is an example of Brownian motion then W (t) is N(0,1).
Verify that the corresponding density function

1 22

e 2t
v 21t

satisfies the partial differential equation (PDE)

of _,0°f

ot 20%
(This PDE is known as the heat equation.)

flz,t) =
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2) Show that if W (¢) is an example of Brownian motion then, for any ¢ > 0,
1
~W(ct
L
is also an example of Brownian motion. [Hint: recall that Brownian motion is

defined by three conditions.]

3) By referring to exercise 5 from the Random Variables section, show that
E(dW?) = At and E(dW}') = 3At*. Next, by combining result (4) in the Ran-
dom Variables section with the third property that defines Brownian motion,
deduce that E(dW;dW;) = E(dW;)E(dW,) = 0, for ¢ # j. Thus show that
S (W (t;) = W(t; 1))? has mean T. Next, show that

j=1
N 2 N 2
E (Z dw? — T) =E (Z deQ) ~ 7.
j=1 j=1
Then show that
N 2
2 2
E (Z de> =T+ 2TAt.
7j=1

Deduce that Z;vzl (W (t;) — W (t;_1))* has variance of O(At).

4) We know from exercise 1 above that W (t) is N(0,t). By referring to the
identity (2) from the Random Variables section, show that

E (et+%W(t)) — et\/l_ /OO 6367% dzx.
21t J -

Hence, show that
E (et+§W(t)> — %

D. J. Higham
X. Mao



