
Honours Class 11.949
Mathematics of Financial Derivatives

Section 4: The Asset Price Model

1 A Simple Model for Asset Prices

In a complex financial situation the interest rate might be a function of time or
a stochastic process. In this case the analysis of an asset price model is very
complicated. We therefore assume for the whole course that the short-term bank
deposit interest rate is a known constant. This is not an unreasonable assumption
when valuing options, since a typical equity option has a total lifespan of about
nine months. During such a relatively short time interests may change but not
usually by enough to affect the prices of options significantly. (An interest rate
change from 8% p.a. to 10% p.a. typically decreases a nine-month option value
by about 3%.)

We also remark that the absolute change in the asset price is not by itself a
useful quantity: a change of 1p is much more significant when the asset price is
20p than when it is 200p. Instead, with each change in asset price, we associate
a return, defined to be the change in the price divided by the original value. This
relative measure of the change is clearly a better indicator of its size than any
absolute measure.

Now suppose that at time t the asset price is S. Let consider a small subse-
quent time interval dt, during which S changes to S + dS. (We use the notation
d· for the small change in any quantity over this time interval when we intend
to consider it as an infinitesimal change.) By definition, the return of the asset
price at time t is dS/S. How might we model this return?

To understand the modelling more easily, suppose that the bank deposit in-
terest rate is r and one has a saving account at the bank with balance X at time
t. Thus the return dX/X of the saving at time t is rdt, that is

dX

X
= rdt

or
dX

dt
= rX.
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This ordinary differential equation can be solved exactly to give exponential
growth in the value of the saving, i.e.

X = X0e
r(t−t0),

where X0 is the initial deposit of the saving account at time t0.
However asset prices do not move as money invested in a risk-free bank. It is

often stated that asset prices must move randomly because of the efficient market
hypothesis. There are several different forms of this hypothesis with different
restrictive assumptions, but they all basically say two things:

• The past history is fully reflected in the present price, which does not hold
any further information;

• Markets respond immediately to any new information about an asset.

With the two assumptions above, unanticipated changes in the asset price are a
Markov process.

Under the assumptions, the most common model decomposes the return dS/S
of the asset price into two parts. One is a predictable, deterministic and antici-
pated return akin to the return on money invested in a risk-free bank. It gives a
contribution

µdt

to the return dS/S, where µ is a measure of the average rate of growth of the
asset price, also known as the drift. The second contribution to dS/S models
the random change in the asset price in response to external effects, such as
unexpected news. There are many external effects so by the well-known central
limit theorem this second contribution can be represented by a random sample
drawn from a normal distribution with mean zero and adds a term

σdW

to dS/S. Here σ is a number called the volatility, which measures the standard
deviation of the returns. The quantity dW is the sample from a normal distri-
bution with mean zero and variance dt. Putting these contributions together, we
obtain the stochastic differential equation (SDE)

dS

S
= µdt + σdW

or
dS = µSdt + σSdW, (1)

which is the mathematical representation of our simple recipe for generating asset
prices.

Equation (1) is a linear SDE. Can it be solved exactly to give the value of the
asset price? The answer is yes, but we need the very important Itô formula, also
known as Itô’s lemma.

2



2 Itô’s Lemma

In the previous section we defined the Itô stochastic integrals. However the basic
definition of the integrals is not very convenient in evaluating a given integral.
This is similar to the situation for classical Riemann or Lebesgue integrals, where
we do not use the basic definition but rather the fundamental theorem of calculus
plus the chain rule in the explicit calculations. For example, it is very easy to
use the chain rule to calculate

∫ t

0
cos sds = sin t but not so if you use the basic

definition. In this section we shall establish the stochastic version of the chain
rule for the Itô integrals, which is known as Itô’s formula or lemma. We shall see
in this course that Itô’s formula is not only useful for evaluating the Itô integrals
but, more importantly, it plays a key role in stochastic analysis.

We shall only establish the one-dimensional Itô formula but refer the reader
to Mao (1997) for the multi-dimensional case.

Definition 1 A one-dimensional Itô process is a continuous stochastic process
x(t) which has stochastic differential dx(t) on t ≥ 0 given by

dx(t) = f(t)dt + g(t)dW,

where both f and g are stochastic processes with properties that∫ t

0

|f(s)|ds < ∞ and

∫ t

0

|g(s)|2ds < ∞ ∀t > 0.

The stochastic differential means that

x(t) = x(t0) +

∫ t

0

f(s)ds +

∫ t

0

g(s)dW (s)

holds for any 0 ≤ t0 ≤ t < ∞.

We shall sometimes speak of Itô process x(t) and its stochastic differential
dx(t) on t ∈ [a, b], and the meaning is apparent.

Let C2,1(R × R+; R) denote the family of all real-valued functions V (x, t)
defined on R× R+ such that they are twice continuously differentiable in x and
once in t. If V ∈ C2,1(R× R+; R), we write

Vt =
∂V

∂t
, Vx =

∂V

∂x
, Vxx =

∂2V

∂x2

for convenience.

Theorem 1 (The one-dimensional Itô formula) Let x(t) be an Itô process
on t ≥ 0 with the stochastic differential

dx(t) = f(t)dt + g(t)dW,
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where both f and g are stochastic processes with properties that∫ t

0

|f(s)|ds < ∞ and

∫ t

0

|g(s)|2ds < ∞ ∀t > 0.

Let V ∈ C2,1(R×R+; R). Then V (x(t), t) is again an Itô process with the stochas-
tic differential given by

dV (x(t), t) =
[
Vt(x(t), t) + Vx(x(t), t)f(t) +

1

2
Vxx(x(t), t)g2(t)

]
dt

+ Vx(x(t), t)g(t)dW. (2)

The proof is rather technical and we shall only give an outline in the Appendix.
The outline proof is not an examinable part of the course.

3 Explicit Solution of Asset Prices

We can now return to the mathematical model (1) of the asset price. To see the
importance of the Itô formula, let us demonstrate how to apply it to obtain the
explicit solution of equation (1).

Theorem 2 Suppose that the initial asset price S(t0) = S0 > 0 at time t = t0 ≥
0. Then the asset price at time t ≥ t0 is given by

S(t) = S0 exp
[
(µ− 1

2
σ2)(t− t0) + σ(W (t)−W (t0)

]
. (3)

Proof. By the general theory of SDEs (cf. Mao 1997), equation (1), given the
initial value S(t0) = S0 > 0, has a unique solution S(t) on t ≥ t0 and the
solution will remain positive. Thus, to apply the Itô formula, we need define
the C2,1 function on (0,∞) × R+ rather than R × R+. Let us now define V :
(0,∞)× R+ → R by

V (S, t) = log S.

Clearly

Vt = 0, VS =
1

S
, VSS = − 1

S2
.

By Itô’s formula

dV (S(t), t) =
[
Vt(S(t), t) + VS(S(t), t)µS(t) +

1

2
VSS(S(t), t)σ2S2(t)

]
dt

+ VS(S(t), t)σS(t)dW.

Thus

d log S(t) =
[ 1

S(t)
µS(t)− 1

2S2(t)
σ2S2(t)

]
dt +

1

S(t)
σS(t)dW

= (µ− 1
2
σ2)dt + σdW.
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Integrating both sides from t0 to t yields

log S(t)− log S(t0) = (µ− 1
2
σ2)(t− t0) + σ(W (t)−W (t0)).

Recalling the initial value S(t0) = S0 we rearrange the above to give

log S(t) = log S0 + (µ− 1
2
σ2)(t− t0) + σ(W (t)−W (t0)) (4)

= log
(
S0 exp

[
(µ− 1

2
σ2)(t− t0) + σ(W (t)−W (t0))

])
and the assertion follows.

We also observe from (4) that log S(t) follows a normal distribution with mean
log S0 + (µ− 1

2
σ2)(t− t0) and variance σ2(t− t0). In other words, S(t) follows a

log-normal distribution.

Exercises

1. Let Z ∼ N(0, 1) and α > 0. Show

E exp[−1
2
α2 + αZ] = 1.

2. Clearly the Brownian motion W (t) is an Itô process with the stochastic
differential dW . Given S0 > 0, define

V (W, t) = S0 exp
[
(µ− 1

2
σ2)t + σW

]
for (W, t) ∈ R× R+.

Show by Itô’s formula that

S(t) = V (W (t), t) = S0 exp
[
(µ− 1

2
σ2)t + σW (t)

]
is an Itô process with the stochastic differential

dS(t) = µS(t)dt + σS(t)dW (t)

and the initial value S(0) = S0 at time t = 0.

3. Show that S(t) defined in Exercise 1 has the probability density function

f(S) =
1

Sσ
√

2πt
exp

[
− 1

2σ2t
{ log(S/S0)− (µ− 1

2
σ)t}2

]
on S > 0. Then show that S(t) has the nth moment

E Sn(t) = Sn
0 exp [(µ− 1

2
σ2)nt + 1

2
σ2n2t].

In particular, show that S(t) has mean S0e
µt and variance S2

0e
2µt(eσ2t − 1).
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Appendix: Proof of Itô’s formula
The proof is an outline. For the details please see Mao (1997).
Step 1. We may assume that x(t) is bounded, say by a constant K so the

values of V (x, t) for x /∈ [−K, K] are irrelevant. Otherwise, for each n ≥ 1, define
the stopping time

τn = inf{t ≥ 0 : |x(t)| ≥ n}.

Clearly, τn ↑ ∞ a.s. Also define the stochastic process

xn(t) = [−n ∨ x(0)] ∧ n +

∫ t

0

f(s)I[[0,τn]](s)ds +

∫ t

0

g(s)I[[0,τn]](s)dW (s)

on t ≥ 0. Then |xn(t)| ≤ n, that is xn(t) is bounded. Moreover, for every t ≥ 0
and almost every ω ∈ Ω, there exists an integer no = no(t, ω) such that

xn(s, ω) = x(s, ω) on 0 ≤ s ≤ t

provided n ≥ no. Therefore, if we can establish (2) for xn(t), that is

V (xn(t), t)− V (x(0), 0)

=

∫ t

0

[
Vt(xn(s), s) + Vx(xn(s), s)f(s)I[[0,τn]](s) +

1

2
Vxx(xn(s), s)g2(s)I[[0,τn]](s)

]
ds

+

∫ t

0

Vx(xn(s), s)g(s)I[[0,τn]](s)dW (s),

then we obtain the desired result upon letting n →∞.
Step 2. We may assume that V (x, t) is C2, i.e. it is twice continuously

differentiable in both variables (x, t), otherwise we can find a sequence {Vn(x, t)}
of C2-functions such that

Vn(x, t) → V (x, t),
∂

∂t
Vn(x, t) → Vt(x, t),

∂

∂x
Vn(x, t) → Vx(x, t),

∂2

∂x2
Vn(x, t) → Vxx(x, t)
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uniformly on every compact subset of R× R+ (see e.g. Friedman (1975)). If we
can show the Itô formula for every Vn, that is

Vn(x(t), t)− Vn(x(0), 0)

=

∫ t

0

[ ∂

∂t
Vn(x(s), s) +

∂

∂x
Vn(x(s), s)f(s) +

1

2

∂2

∂x2
Vn(x(s), s)g2(s)

]
ds

+

∫ t

0

∂

∂x
Vn(x(s), s)g(s)dW (s),

then, letting n →∞, we obtain the desired result (2). By steps 1 and 2, we may
assume without loss of generality that V, Vt, Vtt, Vx, Vtx and Vxx are all bounded
on R× [0, t] for every t ≥ 0.

Step 3. If we can show (2) in the case that both f and g are simple step
processes (explained below), then the general case follows by approximation pro-
cedure. This is because that both f and g can be approximated by simple step
processes.

Step 4. We now fix t > 0 arbitrarily, and assume that V, Vt, Vtt, Vx, Vtx, Vxx

are bounded on R × [0, t], and f(s), g(s) are simple processes on s ∈ [0, t]. Let
Π = {t0, t1, · · · , tk} be a partition of [0, t] (i.e. 0 = t0 < t1 < · · · < tk = t)
sufficiently fine that f(s) and g(s) are “random constant” on every (ti, ti+1] in
the sense that

f(s) = fi, g(s) = gi if s ∈ (ti, ti+1].

Using the well-known Taylor expansion formula we get

V (x(t), t)− V (x(0), 0) =
k−1∑
i=0

[
V (x(ti+1), ti+1)− V (x(ti), ti)

]
=

k−1∑
i=0

Vt(x(ti), ti)∆ti +
k−1∑
i=0

Vx(x(ti), ti)∆xi +
1

2

k−1∑
i=0

Vtt(x(ti), ti)(∆ti)
2

+
k−1∑
i=0

Vtx(x(ti), ti)∆ti∆xi +
1

2

k−1∑
i=0

Vxx(x(ti), ti)(∆xi)
2 +

k−1∑
i=0

Ri, (5)

where

∆ti = ti+1 − ti, ∆xi = x(ti+1)− x(ti), Ri = o((∆ti)
2 + (∆xi)

2).

Set |Π| = max0≤i≤k−1 ∆ti. It is easy to see that when |Π| → 0, with probability
1,

k−1∑
i=0

Vt(x(ti), ti)∆ti →
∫ t

0

Vt(x(s), s)ds, (6)
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k−1∑
i=0

Vx(x(ti), ti)∆xi →
∫ t

0

Vx(x(s), s)dx(s)

=

∫ t

0

Vx(x(s), s)f(s)ds +

∫ t

0

Vx(x(s), s)g(s)dW (s), (7)

k−1∑
i=0

Vtt(x(ti), ti)(∆ti)
2 → 0, and

k−1∑
i=0

Ri → 0. (8)

Note that
k−1∑
i=0

Vtx(x(ti), ti)∆ti∆xi

=
k−1∑
i=0

Vtx(x(ti), ti)fi(∆ti)
2 +

k−1∑
i=0

Vtx(x(ti), ti)gi∆ti∆Wi,

where ∆Wi = Wti+1
− Wti . When |Π| → 0, the first term tends to 0 a.s. while

the second term tends to 0 in L2 since

E
(k−1∑

i=0

Vtx(x(ti), ti)gi∆ti∆Wi

)2

=
k−1∑
i=0

E[Vtx(x(ti), ti)gi]
2(∆ti)

3 → 0.

In other words, we have shown (due to the assumption of boundedness) that

k−1∑
i=0

Vtx(x(ti), ti)∆ti∆xi → 0 in L2. (9)

Note also that

k−1∑
i=0

Vxx(x(ti), ti)(∆xi)
2

=
k−1∑
i=0

Vxx(x(ti), ti)[f
2
i (∆ti)

2 + 2figi∆ti∆Wi] +
k−1∑
i=0

Vxx(x(ti), ti)g
2
i (∆Wi)

2.

The first term tends to 0 in L2 as |Π| → 0 in the same reason as before, while we
claim the second term tends to

∫ t

0
Vxx(x(s), s)g2(s)ds in L2. To show the latter,

we set h(t) = Vxx(x(t), t)g2(t), hi = Vxx(x(ti), ti)g
2
i , and compute

E
(k−1∑

i=0

hi(∆Wi)
2 −

k−1∑
i=0

hi∆ti

)2

= E
(k−1∑

i=0

k−1∑
j=0

hihj[(∆Wi)
2 −∆ti][(∆Wj)

2 −∆tj]
)
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=
k−1∑
i=0

E (h2
i [(∆Wi)

2 −∆ti]
2)

=
k−1∑
i=0

E h2
i E[(∆Wi)

4 − 2(∆Wi)
2∆ti + (∆ti)

2]

=
k−1∑
i=0

E h2
i [3(∆ti)

2 − 2(∆ti)
2 + (∆ti)

2]

= 2
k−1∑
i=0

E h2
i (∆ti)

2 → 0,

where we have used the known fact that E (∆Wi)
2n = (2n)!(∆ti)

n/(2nn!). Thus

k−1∑
i=0

hi(∆Wi)
2 →

∫ t

0

h(s)ds in L2.

In other words, we have already shown that

k−1∑
i=0

Vxx(x(ti), ti)(∆xi)
2 →

∫ t

0

Vxx(x(s), s)g2(s)ds in L2. (10)

Substituting (6)–(10) into (5) we obtain that

V (x(t), t)− V (x(0), 0)

=

∫ t

0

[
Vt(x(s), s) + Vx(x(s), s)f(s) +

1

2
Vxx(x(s), s)g2(s)

]
ds

+

∫ t

0

Vx(x(s), s)g(s)dW (s) a.s.

which is the required (2). The proof is now complete.

D.J. Higham
X. Mao
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