
Honours Class 11.949
Mathematics of Financial Derivatives
Section 6: The Black-Scholes Formula

In the previous section we have shown that if an asset price moves according
to the linear SDE

dS(t) = µS(t)dt+ σS(t)dW (t),

then the value C(S, t) of the European call option on the asset price S at time t
satisfies the following Black-Scholes PDE

∂C

∂t
+ 1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0 (1)

on S > 0 and t ∈ [0, T ], where r is the risk-free interest rate and σ is the volatility.
Moreover, the option value has the final payoff of the European call option as the
final condition

C(S, T ) = max(S − E, 0), (2)

where E > 0 is the exercise price of the derivative security, T is the date of expiry.
To price the European call option, all we need is to solve the PDE (1) along with
the final condition (2). If we obtain the explicit solution V to the PDE while we
know the asset price S at time t, then its option price is simply V (S, t).

Theorem 1 (The Black-Scholes formula for the European call option)
The explicit solution to the PDE (1) is given by

C(S, t) = SN(d1)− Ee−r(T−t)N(d2), (3)

where N(x) is the cumulative probability distribution of standard normal distri-
bution, namely

N(x) =
1√
2π

∫ x

−∞
e−

1
2
z2dz,

while

d1 =
log(S/E) + (r + 1

2
σ2)(T − t)

σ
√
T − t

and d2 =
log(S/E) + (r − 1

2
σ2)(T − t)

σ
√
T − t

.
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Proof. The theorem can be proved purely by the PDE technique (cf. Friedman
1996) but we will use the probabilistic method (cf. Mao 1997).

Given any pair of S > 0 and t ∈ [0, T ], we introduce an SDE

dx(u) = rx(u)du+ σx(u)dW (u) on t ≤ u ≤ T (4)

with initial value x(t) = S at u = t. In Section 4 we showed that this linear SDE
can be solved explicitly. In particular, we have

x(T ) = S exp
[
(r − 1

2
σ2)(T − t) + σ(W (T )−W (t))

]
. (5)

Let us now define a C2,1-function

V (x, u) = C(x, u)er(T−u), (x, u) ∈ (0,∞)× [t, T ].

Here C(x, u) satisfies the Black-Scholes PDE, that is (in x and u rather than S
and t),

∂C

∂u
+ 1

2
σ2x2∂

2C

∂x2
+ rx

∂C

∂x
− rC = 0. (6)

Compute

∂V

∂u
=
(∂C
∂u
− rC

)
er(T−u),

∂V

∂x
=
∂C

∂x
er(T−u),

∂2V

∂2x
=
∂2C

∂2x
er(T−u).

By the Itô formula

dV (x(u), u) =
[∂V (x(u), u)

∂u
+
∂V (x(u), u)

∂x
rx(u) +

1

2

∂2V (x(u), u)

∂2x
σ2x2(u)

]
du

+
∂V (x(u), u)

∂x
σx(u)dW (u)

= er(T−u)
[∂C(x(u), u)

∂u
− rC(x(u), u) + rx(u)

∂V (x(u), u)

∂x

+1
2
σ2x2(u)

∂2V (x(u), u)

∂2x

]
du

+ σx(u)er(T−u)
∂C(x(u), u)

∂x
dW (u).

Using (6) we see that

dV (x(u), u) =
∂V (x(u), u)

∂x
σx(u)dW (u).

Integrating both sides from u = t to u = T yields

V (x(T ), T )− V (x(t), t) =

∫ T

t

∂V (x(u), u)

∂x
σx(u)dW (u).
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Taking expectations and recalling the property of Itô’s integrals we obtain

EV (x(T ), T )− EV (x(t), t) = 0.

Note
V (x(T ), T ) = C(x(T ), T ) = max(x(T )− E, 0)

while
V (x(t), t) = C(x(t), t)er(T−t) = C(S, t)er(T−t).

Thus
E [max(x(T )− E, 0)]− C(S, t)er(T−t) = 0,

that is
C(S, t) = e−r(T−t)E [max(x(T )− E, 0)]. (7)

Note that

log(X(T )) = log(S) +
(
r − 1

2
σ2
)

(T − t) + σ(W (T )−W (t)) ∼ N(µ̂, σ̂2),

where

µ̂ = log(S) +
(
r − 1

2
σ2
)

(T − t), σ̂ = σ
√
T − t.

Hence

Z :=
log(X(T ))− µ̂

σ̂
∼ N(0, 1)

which gives
X(T ) = eµ̂+σ̂Z .

Moreover, if X(T )− E ≥ 0, then eµ̂+σ̂Z ≥ E, namely

Z ≥ log(E)− µ̂
σ̂

.

Hence

E [max(x(T )− E, 0)] = E
[

max
(
eµ̂+σ̂Z − E, 0

)]
=

∫ 8

log(E)−µ̂
σ̂

(
eµ̂+σ̂z − E

) 1√
2π
e−

1
2
z2dz.

Compute

log(E)− µ̂
σ̂

=
log(E)− log(S)−

(
r − 1

2
σ2
)

(T − t)

σ
√
T − t

= −
log(S/E) +

(
r − 1

2
σ2
)

(T − t)

σ
√
T − t

= −d2.
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So

E [max(x(T )− E, 0)] =
1√
2π

∫ ∞
−d2

(
eµ̂+σ̂z − E

)
e−

1
2
z2dz

=
1√
2π

∫ ∞
−d2

eµ̂+σ̂z−1
2
z2dz − E√

2π

∫ ∞
−d2

e−
1
2
z2dz. (8)

But
1√
2π

∫ ∞
−d2

e−
1
2
z2dz =

1√
2π

∫ d2

−∞
e−

1
2
z2dz = N(d2), (9)

while

1√
2π

∫ ∞
−d2

eµ̂+σ̂z−1
2
z2dz =

1√
2π

∫ ∞
−d2

eµ̂+
1
2
σ̂2−1

2
(z−σ̂)2dz

=
eµ̂+

1
2
σ̂2

√
2π

∫ ∞
−d2

e−
1
2
(z−σ̂)2dz =

eµ̂+
1
2
σ̂2

√
2π

∫ ∞
−(d2+σ̂)

e−
1
2
x2

dx

=
eµ̂+

1
2
σ̂2

√
2π

∫ d2+σ̂

−∞
e−

1
2
x2

dx = eµ̂+
1
2
σ̂2

N(d2 + σ̂)

= eµ̂+
1
2
σ̂2

N(d1), (10)

since d2 + σ̂ = d1. Substituting (9) and (10) into (8) yields

E [max(x(T )− E, 0)] = eµ̂+
1
2
σ̂2

N(d1)− EN(d2).

Substituting this into (7) gives

C(S, t) = e−r(T−t)
(
eµ̂+

1
2
σ̂2

N(d1)− EN(d2)
)

= N(d1) exp [− r(T − t) + logS + (r − 1
2
σ2)(T − t) + 1

2
σ2(T − t)]

− Ee−r(T−t)N(d2)

= SN(d1)− Ee−r(T−t)N(d2)

as required. The proof is therefore complete.

Once we have the formula for the European call option we can easily obtain
the corresponding formula for the European put option. Let P (S, t) be the value
of the European put option on the asset price S at time t. The value of the put
option at expiry can be written as

P (S, T ) = max(E − S, 0).

By the put-call parity we have

S + P (S, t)− C(S, t) = Ee−r(T−t)
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Thus
P (S, t) = Ee−r(T−t) + C(S, t)− S.

Substituting (3) into this gives

P (S, t) = Ee−r(T−t) + SN(d1)− Ee−r(T−t)N(d2)− S
= Ee−r(T−t)N(−d2)− SN(−d1).

Theorem 2 (The Black-Scholes formula for the European put option)
The value of the European put option on the asset price S at time t is given by

P (S, t) = EN(−d2)e
−r(T−t) − SN(−d1), (11)

where d1 and d2 are the same as before.

Exercises

1. Show that the value P (S, t) of a European put option also satisfies the
Black-Scholes PDE, namely

∂P

∂t
+ 1

2
σ2S2∂

2P

∂S2
+ rS

∂P

∂S
− rP = 0. (12)

2. In the similar way as in the proof of Theorem 1 (rather than using the put-
call parity), solve the PDE (12) along with the final condition P (S, T ) =
max(E − S, 0) to verify formula (11).
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