Exercises on Markov chains

13. Recall the notation for a Markov chain X_{n} with state space S,

$$
p_{i j}^{(n)}:=\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)=\left(P^{n}\right)_{i j} \quad \text { for } i, j \in S
$$

Justifying your steps, simplify

$$
\mathbb{P}\left(X_{5}=j \mid X_{2}=i\right), \quad \text { and } \mathbb{P}\left(X_{2}=j, X_{6}=k \mid X_{0}=i\right), \text { for } i, j, k \in S
$$

14. A Markov chain X_{n} with state space $S=\{1,2,3\}$ and initial value $X_{0}=1$ makes two types of transitions: at even times n, the chain jumps with transition matrix P while at odd times n, the chain jumps with transition matrix P^{\prime}, where

$$
P=\left(\begin{array}{ccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{3} & \frac{2}{3}
\end{array}\right), \quad P^{\prime}=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right) .
$$

This means, for example, that $\mathbb{P}\left(X_{3}=2 \mid X_{2}=1\right)=\frac{1}{2}$ but $\mathbb{P}\left(X_{4}=2 \mid X_{3}=1\right)=\frac{1}{3}$. (This is called a time-inhomoheneous Markov chain.) Then the subsequence $X_{0}, X_{2}, X_{4}, \ldots$ is a Markov chain (why?): what is its transition matrix?
15. Suppose that the probability of rain each day is $0.4+0.2 x$, where $x \in\{0,1,2\}$ is the total number of rainy days over the previous two days. Represent the weather as a 4 -state Markov chain, writing down the meaning of each state and the one-step transition matrix. Suppose that it rained yesterday but not the day before. What is the probability that it will rain tomorrow?
16. The Ehrenfest diffusion model. At time 0 , an urn contains a mixture of red and black balls, with N balls in total. At each time $1,2, \ldots$ a ball is picked at random from the urn and replaced by a ball of the other colour. The total number of balls in the urn therefore remains constant at N. Let the state X_{n} of the system be the number of black balls in the urn at time $n=0,1,2, \ldots$
(i) Write down the state space and the one-step transition probabilities for the Markov chain X_{n}.
(ii) Suppose that the initial distribution for the initial number of black balls X_{0} is binomial $(N, 1 / 2)$. What is the distribution of X_{1}, the number of black balls after one step? How about X_{100} ?
17. Let X_{n} be a Markov chain on $\{1,2,3\}$ with transition matrix

$$
P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\alpha & \beta & \gamma \\
0 & 0 & 1
\end{array}\right)
$$

Suppose that $X_{0}=2$ and let $T=\min \left\{n: X_{n} \neq 2\right\}$. Find $\mathbb{P}\left(X_{T}=1\right)$ and $\mathbb{P}\left(X_{T}=3\right)$ and deduce $\lim _{n \rightarrow \infty} p_{2 j}^{(n)}$ for $j=1,2,3$.
18. A board has 9 squares arranged 3 by 3 . A counter is moved on these in a Markov chain, the permissible moves being to a neighbouring square (horizontally, vertically or diagonally) with equal probabilities for each neighbour. You can exploit the symmetry of this situation to reduce the problem to a 3-state Markov chain by considering the 3 classes of square Centre, Corner or Other. Find the transition probabilities for the simplified 3 -state chain. Find the equilibrium distribution for the 3 -state chain, and hence deduce the limiting probabilities for the 9 -state chain.
19. Cat and mouse Markov chain. A cat and a mouse move randomly among six locations arranged and connected as a hexagon, so each location has two neighbours, and each move is equally likely to take the animal to either neighbour. Label the locations $1,2,3,4,5,6$ in clockwise order. The locations of the cat and mouse are C_{n} and M_{n} respectively, starting with $C_{0}=1$ and $M_{0}=3$. The cat and mouse move independently until they are in the same place (i.e., $C_{n}=M_{n}$), at which point the cat catches the mouse. How long on average does it take until the cat catches the mouse?

Hint: Set up a single Markov chain that contains enough information to answer the problem. Making full use of symmetry, it suffices to work with a chain with only 2 states. Then use a one-step analysis, conditioning on the first step.

