More exercises on Markov chains

20. A Markov chain on state space $\{1,2,3,4\}$ has the transition matrix

$$
P=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{3} & \frac{2}{3} \\
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right)
$$

Is the chain irreducible? Find the equilibrium distribution and describe $\lim _{n \rightarrow \infty} p_{i j}^{(n)}$.
21. There are three light switches for three lights. Initially, all of the lights are off. At times $1,2,3, \ldots$, a switch is chosen at random and is then flicked (changing it from Off to On, or from On to Off).
(i) Give a graphical representation of the Markov chain describing this process and describe the state-space and transition matrix.
(ii) How long does it take on average until all the lights are on?
22. A coin with probability $1 / 2$ of heads is tossed repeatedly, giving the sequence of results $\xi_{1}, \xi_{2}, \xi_{3}, \ldots$ where each ξ_{i} is either H (head) or T (tail). For $n \geq 0$, define X_{n} to be the pair $\xi_{n+1} \xi_{n+2}$. Thus, if the coin sequence is $H T T H \ldots$ then $X_{0}=H T, X_{1}=T T, X_{2}=T H$ and so on.
(i) Show that X_{n} is a Markov chain. Determine the state space and the one-step transition matrix.
(ii) How many tosses does it take on average to first get $H T$?
(iii) What is the expected number of tosses to get the first run of two identical tosses? (For example, it takes 2 tosses for the sequence TTHTH ... and 5 for THTHH)

Here is a more challenging problem for those who are familiar with generating functions.
23. The Ehrenfest diffusion model revisited. Recall the model described in Exercise 16. This question gives a more advanced method for deriving the stationary distribution $\pi=\left(\pi_{i}\right)$ for the Markov chain. Define the generating function

$$
\hat{\pi}(s):=\sum_{i=0}^{N} \pi_{i} s^{i}=\pi_{0}+\pi_{1} s+\cdots+\pi_{N} s^{N}
$$

(i) Considering $\pi P=\pi$, show that

$$
\hat{\pi}(s)=\frac{1}{N}\left(1-s^{2}\right) \hat{\pi}^{\prime}(s)+s \hat{\pi}(s)
$$

and hence establish the differential equation $\hat{\pi}^{\prime}(s) / \hat{\pi}(s)=N /(1+s)$.
(ii) Integrating with respect to s and using appropriate information to discover any constant, show that

$$
\hat{\pi}(s)=\left(\frac{1+s}{2}\right)^{N}
$$

(iii) Use the binomial theorem to expand this as a power series in s and then deduce values for π_{n} by equating coefficients.
(iv) If the process starts with all the balls black, how long does it take on average until one next gets to this state?

