Exercises on Renewal processes

34. A battery in an appliance has a lifetime distributed uniformly over the interval $(30,60)$ (in units of hours). Let $N(t)$ be the number of batteries that have failed after t hours. What is $\lim _{t \rightarrow \infty} \frac{N(t)}{t}$?
35. Cars queue at a gate. The length of each car is an independent copy of a positive random variable L. Each successive car stops leaving a gap, distributed according to a uniform distribution on $(0,1)$, to the car in front (or to the gate in the case of the car at the head of the queue). Consider the number of cars $N(t)$ lined up within distance t of the gate. Determine $\lim _{t \rightarrow \infty} \frac{\mathbb{E}(N(t))}{t}$ if (i) $L \equiv c$ is fixed; and also if (ii) L is exponentially distributed with parameter 1.
36. A manufacturing process requires continuous use of a machine. We start with a new machine at time 0 . We follow an age-replacement policy: the machine is replaced when it fails or when it reaches age 3 years. This policy is useful in reducing the number of on-job failures, which tend to be more costly. The machines have a lifetime distribution that is uniform on the interval $(1,6)$ (years). Show that the following form renewal sequences, and give the long run rates at which renewals occur in each case.
(i) $S_{n}=$ time of the nth on-job failure.
(ii) $S_{n}=$ time of the nth planned replacement.
(iii) $S_{n}=$ time of the nth replacement (planned or otherwise).
37. A Markov chain on state space $\{1,2\}$ has transition matrix $P=\left(\begin{array}{ll}0.8 & 0.2 \\ 0.4 & 0.6\end{array}\right)$. Suppose that the chain starts in state 1 at time 0 . Let $S_{0}, S_{1}, S_{2}, \ldots$ be the times of successive visits of the chain to state $1\left(\right.$ so $\left.S_{0}=0\right)$. Let $N(t)$ be the number of returns to state 1 by time t (i.e., not counting the visit at time 0$)$. Show that $N(t)$ is a renewal process and compute $\lim _{t \rightarrow \infty} t^{-1} \mathbb{E}(N(t))$ using the elementary renewal theorem.
38. Potential customers arrive at a service kiosk in a bank as a Poisson process of rate 2. Being impatient, the customers leave immediately unless the assistant is free. Customers are served independently, with mean service time 2 .
(i) Using the memoryless property of the Poisson process, show that the mean time between the start of two successive service periods is $\frac{5}{2}$.
(ii) Hence show that the long-run rate at which customers are served is $\frac{2}{5}$.
(iii) So what proportion of customers who arrive at the bank actually get served?
