
Chapter 1

Revision of discrete probability theory

1.1 Outline

In the chapter we review some of the basic definitions and results of probability theory that we are
going to use throughout the course. You will have covered most of this material in MM204 and
MM304, although the emphasis may be a little different.

1.2 Set theory notation

A set is a collection of elements. The set of no elements is the empty set ∅. Finite non-empty sets
can be listed like S = {a1, . . . , an}. If a set S contains an element a, we write a ∈ S. A set R
is a subset of a set S, written R ⊆ S, if every a ∈ R also satisfies a ∈ S. For two sets S and
T , their intersection is S ∩ T , the set of elements that are in both A and B, and their union is
S ∪ T , the set of elements in at least one of S or T . For two sets S and T , ‘S minus T ’ is the set
S \ T = {a ∈ S : a /∈ T}, the set of elements that are in S but not in T .

Note that S ∩ ∅ = ∅, S ∪ ∅ = S, and S \ ∅ = S.

1.3 Discrete probability spaces

Suppose we perform an experiment that gives a random outcome. Although we don’t know what
the outcome will be, suppose we do know all of the possible outcomes it could be. Let Ω denote
the set of all possible outcomes: the sample space. To start with, we take Ω to be discrete, which
means it is finite or countably infinite. This means that we can write Ω as a (possibly infinite) list:

Ω = {ω1, ω2, ω3, . . .},

where ω1, ω2, ω3, . . . are the possible outcomes to our experiment.

Example. Rolling an ordinary die. Ω = {1, 2, 3, 4, 5, 6}.

A set A ⊆ Ω (i.e., a subset of Ω) is called an event. It is events that we are interested in. For
example, {4, 5, 6} is the event that the die scores at least 4; {2, 4, 6} is the event that the die is
even. The collection of events associated with Ω includes Ω itself (the certain event!) and ∅ (the
impossible event!).

Given events A, B ⊆ Ω, we can build new events using the operations of set theory:

• A ∪B (“A or B”), the event that A happens, or B happens, or both.
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• A ∩B (“A and B”), the event that A and B both happen.

Two events A and B are called disjoint or mutually exclusive if A ∩B = ∅.

Example. If A = {4, 5, 6}, B = {2, 4, 6}, and C = {1, 3} then A ∪ B = {2, 4, 5, 6} (the score is
even or at least 4) and A∩B = {4, 6} (the score is even and at least 4). A∩C = ∅ so A and C are
disjoint; so are B and C.

We want to assign probabilities to events.

Definition 1.1. Let Ω be a non-empty discrete sample space. A function P that gives a value
P(A) ∈ [0, 1] for every subset A ⊆ Ω is called a probability measure on Ω if:

(P1) P(∅) = 0 and P(Ω) = 1;

(P2) For any A1, A2, . . . a collection of disjoint subsets of Ω,

P

(

∞
⋃

i=1

Ai

)

=
∞
∑

i=1

P(Ai).

Given Ω and a probability measure P, we call (Ω, P) a discrete probability space.

For an event A ⊆ Ω, we define its complement, denoted Ac (or sometimes Ā) and read “not A”,
to be Ac := Ω \A = {ω ∈ Ω : ω /∈ A}. Notice that (Ac)c = A, A ∩Ac = ∅ and A ∪Ac = Ω.

Example. In the die example, Ω = {1, 2, . . . , 6}; it is natural to suppose that the die is fair, so
each outcome is equally likely. Then for A ⊆ Ω, P(A) is 1

6 times the number of outcomes in A. So
P({2, 4, 6}) = 3

6 = 1
2 and P({4, 5, 6}) = 1

2 too.

Note: for non-discrete sample spaces, we may not be able to assign probabilities to all subsets in
a sensible way, and so smaller collections of events are required.

Theorem 1.2 (Properties of probability). Let (Ω, P) be a discrete probability space. Then:

(i) For A ⊆ Ω, P(Ac) = 1− P(A);

(ii) If A, B ⊆ Ω and A ⊆ B, then P(A) ≤ P(B) [monotonicity];

(iii) If A, B ⊆ Ω, then
P(A ∪B) = P(A) + P(B)− P(A ∩B).

In particular, if A ∩B = ∅, P(A ∪B) = P(A) + P(B).

Proof. Exercise.

Example. Back to the die example, if A = {4, 5, 6} and B = {2, 4, 6}, A ∪ B = {2, 4, 5, 6},
A ∩B = {4, 6}, and (iii) says that

P(A ∪B) = P(A) + P(B)− P(A ∩B) =
3

6
+

3

6
−

2

6
=

4

6
.

Definition 1.3 (Conditional probability). If A and B are events with P(B) > 0 then the conditional
probability P(A | B) of A given B is defined by

P(A | B) :=
P(A ∩B)

P(B)
.
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Suppose that we know that an event B has occurred. Then P(A | B) is the probability that A
occurs given B has occurred.

Theorem 1.4. For any B ⊆ Ω with P(B) > 0, P( · | B) is a probability measure on Ω.

Proof. Exercise.

So P( · | B) behaves just like P( · ). For many calculations, it is more useful to write

P(A ∩B) = P(A | B)P(B). (1.1)

Example. Suppose an urn contains 2 blue and 3 red balls. Two balls are drawn without replace-
ment. What is the probability that the first ball is blue and the second is red? Let B be the event
that the first ball is blue, and A be the event that the second ball is red. We have P(B) = 2/5 and
P(A | B) = 3/4. Hence

P(A ∩B) = P(A | B)P(B) =
2

5
·
3

4
=

3

10
.

More generally, we have the following result.

Theorem 1.5 (Multiplication rule for conditional probabilities). Let A1, . . . , An be finitely many
events. Suppose that P(A1 ∩ · · · ∩An−1) > 0. Then

P(A1 ∩ · · · ∩An) = P(A1) · P(A2 | A1) · P(A3 | A1 ∩A2) · · ·P(An | A1 ∩ · · · ∩An−1). (1.2)

To see what’s going on, consider three events, A1, A2, A3, with P(A1 ∩ A2) > 0. Then, since
A1 ∩A2 ⊆ A1, we know that P(A1) ≥ P(A1 ∩A2) > 0 by the monotonicity of P. Then,

P(A1 ∩A2 ∩A3) = P(A1 ∩A2)P(A3 | A1 ∩A2) = P(A1)P(A2 | A1)P(A3|A1 ∩A2),

by two applications of (1.1). The idea behind the proof of the theorem should now be clear.

Example. Suppose you are at a party with n people (in total). We use the multiplication rule to
calculate the probability that all the n people have a different birthday. Call this event Dn. We
ignore the 29th of February and suppose that a year has 365 days. List the guests in some order
as 1, 2, . . . , n. Let Ai be the event that the ith guest does not share a birthday with any of guests
1, 2, . . . , i− 1. Then Dn = ∩n

i=1Ai and

P(A1) = 1; P(A2 | A1) =
364

365
; P(A3 | A1 ∩A2) =

363

365
,

up to, for n ≤ 365,

P(An | A1 ∩ · · · ∩An−1) =
365− n + 1

365
.

Thus we obtain, for 1 ≤ n ≤ 365

P(A1 ∩ · · · ∩An) =
n−1
∏

i=1

365− i

365
=

364!

(365− n)!365n−1
.

It turns out that P(D22) ≈ 0.5243 but P(D23) ≈ 0.4927, so as soon as there are at least 23 people,
there’s a better than 50% chance that two of them share a birthday!
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Definition 1.6 (Partition). A countable collection of events E1, E2, . . . is called a partition of Ω
if:

(i) For all i, Ei ⊆ Ω and P(Ei) > 0;

(ii) For i 6= j, Ei ∩ Ej = ∅ (the events are disjoint);

(iii)
⋃

i Ei = Ω (the events fill the sample space).

In many cases, a useful partition consists of just two events, A and Ac.
Although the following theorem follows directly from the definition, we shall see that is is very

useful.

Theorem 1.7 (Law of total probability). Let E1, E2, . . . be a partition of Ω. Then for all A ⊆ Ω,

P(A) =
∑

i

P(Ei)P(A | Ei).

Proof. Given a partition (Ei, i ∈ I) of Ω, we have

A = A ∩ Ω = A ∩

(

⋃

i∈I

Ei

)

=
⋃

i∈I

(A ∩ Ei),

which is the distributive law for sets. Since the (Ei, i ∈ I) are pairwise disjoint, so are the (A∩Ei, i ∈
I). Hence,

P(A) = P

(

⋃

i∈I

(A ∩ Ei)

)

=
∑

i∈I

P(A ∩ Ei) =
∑

i∈I

P(A | Ei)P(Ei),

using the definition of conditional probability (since P(Ei) > 0).

Example. Again consider an urn with two blue balls and three red balls, and suppose that two
balls are drawn without replacement. What is the probability of the event E that both balls have
the same colour?

Let B, A be the event that the first ball is blue, red respectively. Clearly, (A, B) is a partition
of Ω. Then, by the law of total probability,

P(E) = P(B)P(E | B) + P(A)P(E | A) =
2

5
·
1

4
+

3

5
·
2

4
=

2

5
.

Theorem 1.8 (Bayes’ formula). Let E1, E2, . . . be a partition of Ω. Then for all A ⊆ Ω with
P(A) > 0,

P(En | A) =
P(A | En)P(En)
∑

i P(A | Ei)P(Ei)
.

Proof. By the law of total probability, the denominator is just P(A). The numerator is P(A ∩ En)
by the definition of conditional probability. Hence the theorem follows, again by the definition of
conditional probability.
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Example. Bob the cat has gone missing. It is presumed Bob is equally likely to be in any one
of three places: the arcade, the butcher’s, and the chip shop. The probability that a search of the
arcade would turn up Bob, if Bob was actually there, is 4/5. The corresponding probabilities for
the butcher’s and chip shop are 1/2 and 3/4 respectively. What is the (conditional) probability that
Bob is in the butcher’s given that searches of the arcade and the chip shop have been unsuccessful?

By Bayes’ formula

P(B | UA ∩ UC) =
P(UA ∩ UC | B)P(B)

P(UA ∩ UC)
=

1

3P(UA ∩ UC)
.

By the law of total probability (LOTP),

P(UA ∩ UC) = (UA ∩ UC | A)P(A) + (UA ∩ UC | B)P(B) + (UA ∩ UC | C)P(C)

=
1

3

(

1

5
+ 1 +

1

4

)

=
29

60
.

So P(B | UA ∩ UC) = 20/29 ≈ 0.69.

Definition 1.9 (Independent events). A countable collection (Ai, i ∈ I) of events is called inde-
pendent if, for every finite subset J ⊆ I,

P

(

⋂

j∈J

Aj

)

=
∏

j∈J

P(Aj).

In particular, two events A and B are independent if P(A ∩B) = P(A)P(B).

Example. For a fair die, if A = {4, 5, 6} and B = {2, 4, 6}, then A ∩ B = {4, 6}. So P(A ∩ B) =
2
6 = 1

3 which is not the same as P(A)× P(B) = 1
2 ×

1
2 = 1

4 . So A and B are not independent.

If events (Ai, i ∈ I) are independent, then they are also pairwise independent, i.e., for i, j ∈ I
with i 6= j, P(Ai∩Aj) = P(Ai)P(Aj). However, the converse is not true in general, as the following
example shows.

Example. Let Ω = {1, 2, 3, 4} and P(i) = 1/4 for i ∈ Ω. Define the events A = {1, 2}, B = {1, 3}
and C = {2, 3}. Then (check!) A, B,C are pairwise independent but not independent.

Note that if A and B are independent and P(B) > 0, then P(A | B) = P(A).

1.4 Random variables and expectation

Let (Ω, P) be a discrete probability space. A function X : Ω → R is a random variable. So each
ω ∈ Ω is mapped to a real number X(ω). The set of possible values for X is X(Ω) = {X(ω) : ω ∈
Ω} ⊂ R. Notice that since Ω is discrete, X(Ω) must be also.

If X and Y are two random variables on (Ω, P), then X+Y , XY , etc, are also random variables.
E.g., (X + Y )(ω) = X(ω) + Y (ω).

Definition 1.10. The distribution of a discrete r.v. X is given by P(X = x) for all x ∈ X(Ω).

Definition 1.11. The distribution function of X is F : R→ [0, 1] given by F (x) = P(X ≤ x).

Example. (Binomial distribution.) Let n be a positive integer and p ∈ [0, 1]. If for k ∈
{0, 1, . . . , n}, P(X = k) =

(

n
k

)

pk(1 − p)n−k, X is a binomial random variable with parameters
n, p. We write X ∼ Bin(n, p). The binomial distribution has the following interpretation: Perform
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n independent “trials” (e.g., coin tosses) each with probability p of “success” (e.g., “heads”), and
count the total number of successes.

Example. (Poisson distribution.) Let λ > 0 and pk := e−λ λk

k! for k = 0, 1, 2, . . .. If P(X = k) = pk,
X is a Poisson random variable with parameter λ. We write X ∼ Po(λ).

Definition 1.12 (Expectation of a discrete r.v.). Let X be a discrete random variable. The ex-
pectation, expected value, or mean of X is defined by:

E(X) =
∑

x∈X(Ω)

xP(X = x),

provided the sum is finite.

Example. Rolling a fair die. The score X is the discrete uniform distribution on S = {1, 2, . . . , 6},
i.e., P(X = x) = 1

6 for x ∈ S. Then F (x) = P(X ≤ x) = x
6 and

E(X) =
∑

x∈S

xP(X = x) =
1

6
(1 + 2 + · · ·+ 6) =

7

2
.

Example. Let A be an event. Let 1A denote the indicator random variable of A, that is, 1A :
Ω → {0, 1} given by

1A(ω) :=

{

1 if ω ∈ A
0 if ω /∈ A

So 1A is 1 if A happens and 0 if not. Then

E(1A) = 1 · P(1A = 1) + 0 · P(1A = 0) = P(1A = 1) = P(A).

Theorem 1.13 (Properties of expectation). For X and Y random variables with well defined
expectations and a, b ∈ R,

(a) Linearity: E(aX + bY ) = aE(X) + bE(Y ).

(b) Monotonicity: Let X ≤ Y , i.e. X(ω) ≤ Y (ω) for all ω ∈ Ω. Then E(X) ≤ E(Y ).

(c) Triangle inequality: |E(X)| ≤ E(|X|).

(d) Law of the Unconscious Statistician: Let h : X(Ω) → R. Then

E(h(X)) =
∑

x∈X(Ω)

h(x)P(X = x).

Proof. Exercise.

Definition 1.14. We define the variance of a random variable X as

Var(X) := E[(X − E(X))2] = E(X2)− (E(X))2.
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Example. Let Y be a Bernoulli random variable with parameter p ∈ [0, 1], so that Y takes values
in S = {0, 1} with P(Y = 1) = p and P(Y = 0) = 1− p. Then

E(Y ) = 0× P(Y = 0) + 1× P(Y = 1) = p,

and
E(Y 2) = 02 × P(Y = 0) + 12 × P(Y = 1) = p,

so Var(Y ) = p− p2 = p(1− p).

Definition 1.15 (Independence of random variables). Let (Ω, P) be a discrete probability space. A
family (Xi, i ∈ I) of random variables is called independent if for any finite subset J ⊆ I and all
xj ∈ Xj(Ω),

P





⋂

j∈J

{Xj = xj}



 =
∏

j∈J

P(Xj = xj).

In particular, random variables X1, . . . , Xn are independent if:

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1) · · ·P(Xn = xn),

for all x1, . . . , xn. P(X1 = x1, . . . , Xn = xn) is called the joint distribution of X1, . . . , Xn.

Theorem 1.16 (Independence means multiply). Let X and Y be independent random variables
on probability space (Ω, P). Then E(XY ) = E(X) · E(Y ).

Theorem 1.17. Let X and Y be independent random variables on probability space (Ω, P) and let
a, b ∈ R. Then

Var(aX + bY ) = a2Var(X) + b2Var(Y ).

In particular, if X and Y are independent, Var(X + Y ) = Var(X) + Var(Y ).

Example. Suppose X ∼ Bin(n, p). What are E(X) and Var(X)? Note X can be written as

X =
n
∑

i=1

Yi,

where Yi are independent, identically distributed (i.i.d.) Bernoulli random variables taking values
1 (success) and 0 (failure) with probabilities p and 1 − p respectively. Recall that E(Yi) = p and
Var(Yi) = p(1− p). Then

E(X) = E

n
∑

i=1

Yi =

n
∑

i=1

E(Yi) = np,

by linearity of expectation. Also, by independence, Var(X) =
∑n

i=1 Var(Yi) = np(1− p).

Example. Minimum and maximum of probability distributions. Let X, Y be the scores on two
independent rolls of a fair die, and let Z = max{X,Y } be the maximum of the two. What is the
distribution of Z and what is E(Z)?

We have that Z ≤ x if and only if X ≤ x and Y ≤ x. So

P(Z ≤ x) = P({X ≤ x} ∩ {Y ≤ x}) = P(X ≤ x) · P(Y ≤ x),

by independence. So

P(Z ≤ x) =
x

6
·
x

6
=

x2

36
.
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To work out P(Z = x) we can use the fact that

P(Z = x) = P(Z ≤ x)− P(Z ≤ x− 1) =
x2

36
−

(x− 1)2

36
=

2x− 1

36
.

(You can also try to check this directly, by counting all the possibilities.) So

E(Z) =

6
∑

x=1

(2x− 1)x

36
=

161

36
≈ 4.47.

1.5 Conditional expectation

Definition 1.18 (Conditional expectation with respect to an event). On a discrete probability
space (Ω, P) let B be an event with P(B) > 0 and let X be a random variable. The conditional
expectation of X given B is

E(X | B) =
∑

x∈X(Ω)

xP(X = x | B).

So E(X | B) can be thought of as expectation with respect to the conditional probability
measure P( · | B). There is an alternative formula which is often very useful:

Theorem 1.19. For an event B with P(B) > 0,

E(X | B) =
E(X1B)

P(B)
,

where 1B is the indicator random variable of B.

Proof. The proof is an exercise in interchanging summations. Starting from our definition,

E(X | B) =
∑

x∈X(Ω)

xP(X = x | B) =
∑

x∈X(Ω)

x
P({X = x} ∩B)

P(B)
,

by the definition of conditional probability. The random variable 1BX takes values x 6= 0 with

P(1BX = x) =
∑

ω∈Ω:ω∈B∩{X=x}

P({ω}) = P({X = x} ∩B),

so by the definition of expectation

1

P(B)

∑

x∈X(Ω)

xP({X = x} ∩B) =
1

P(B)
· E(1BX).

Theorem 1.20 (Partition theorem for expectations). Let (Ei, i ∈ I) be a partition of Ω. Then for
a random variable X,

E(X) =
∑

i∈I

E(X | Ei)P(Ei).
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Proof. Since (Ei, i ∈ I) is a partition, we know
∑

i∈I 1Ei
= 1. Hence

E(X) = E

(

X
∑

i∈I

1Ei

)

= E

(

∑

i∈I

X1Ei

)

=
∑

i∈I

E(X1Ei
),

by linearity of expectation. By the previous theorem, E(X1Ei
) = E(X | Ei)P(Ei).

Example. We throw a fair die and subsequently toss a fair coin as many times as the number
shown on the die. Let X denote the number of heads obtained. What is E(X)?

Let Di be the event that the score on the die is i. Then (Di, i ∈ {1, . . . , 6}) is a partition of Ω,
with P(Di) = 1/6 for each i. Given Di, X ∼ Bin(i, 1/2); in other words, P(X = k | Di) =

(

i
k

)

2−i

for k ∈ {0, . . . , i}. Hence E(X | Di) = i/2, and using the partition theorem

E(X) =
6
∑

i=1

E(X | Di)P(Di) =
1

6

6
∑

i=1

i

2
=

1

24
× 6× 7 =

7

4
.
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