
Chapter 4

Renewal processes

4.1 Introduction

The Poisson process that we studied can be thought of as a counting process, where the value of
the process N(t) at time t is the number of arrivals by time t. In the Poisson process, the (random)
time between arrivals has an exponential distribution. The assumption of exponential interarrival
times is often useful, but not always appropriate for a particular modelling situation. Renewal

theory deals with sequences of events with more general interarrival distributions.
A typical application of renewal theory is to failure or maintenance models. A component is

installed at time 0. It fails at some random time X1 > 0, and is replaced by a new component. The
new component lasts for a second random time X2, with the same distribution as X1. And so on.
At a particular time t, how many times have we had to replace the component? The component
might be something simple like a light-bulb, or it might be something much more elaborate (and
expensive) like a hard disk for an internet server, a washing machine, or an aircraft carrier.

Here are some definitions. We take X1, X2, . . . to be independent, identically distributed, non-
negative random variables which are to be the interarrival times. We denote the common distribu-
tion function of the Xi by

F (x) = P(Xi ≤ x),

and we always assume that the Xi have a positive mean value

E(Xi) = µ ∈ (0,∞).

The total waiting time until the nth arrival is

Sn :=
n
∑

i=1

Xi.

We use the convention S0 = 0 when required. The renewal counting process (N(t), t ≥ 0) is given
by

N(t) =

∞
∑

n=1

1{Sn ≤ t} = number of arrivals by time t.

You should check the alternative formula N(t) = max{n : Sn ≤ t}. A PICTURE is useful here!
The principal objective of renewal theory is to derive properties of certain random variables

associated with N(t) and Sn from knowledge of the distribution F of the interarrival times. For
example, an important quantity is

U(t) = E(N(t)),
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the expected number of arrivals by time t.

Example. Poisson process. A Poisson process with parameter λ > 0 is a renewal process with an
exponential interarrival distribution F (x) = 1− e−λx, x ≥ 0.

4.2 Distribution of N(t)

Some thought shows that N(t) ≥ n if and only if the nth arrival occurs by time t; that is,

{N(t) ≥ n} = {Sn ≤ t}. (4.1)

So we can, in principle, work out the distribution of N(t) from the distribution of Sn.

Lemma 4.1. For any t > 0 and any n = 0, 1, 2, . . .,

P(N(t) = n) = P(Sn ≤ t)− P(Sn+1 ≤ t).

Proof. First we note that

P(N(t) = n) = P ({N(t) ≥ n} ∩ {N(t) ≥ n+ 1}c)
= P(N(t) ≥ n)− P(N(t) ≥ n+ 1),

and then the result follows by the formula (4.1).

Example. The Poisson process. The next result returns to the previously noted fact that the
Poisson process has exponential interarrival times.

Theorem 4.2. Let N(t) be a renewal process with exponential interarrival distribution with paramter

λ > 0, i.e., P(Xi ≤ t) = 1 − e−λt. Then N(t) is Poisson distributed with mean λt, i.e., P(N(t) =

n) = e−λt (λt)
n

n! .

Proof. In case of exponential interarrivals, the mean interarrival time is E(Xi) = µ = 1/λ. We
claim that Sn = X1 + · · ·+Xn has the distribution:

P(Sn ≤ t) = 1−
n−1
∑

r=0

e−λt
(λt)r

r!
, t ≥ 0. (4.2)

Assuming that (4.2) is true, Lemma 4.1 shows that

P(N(t) = n) =

(

1−
n−1
∑

r=0

e−λt
(λt)r

r!

)

−
(

1−
n
∑

r=0

e−λt
(λt)r

r!

)

,

and all but one of the terms cancel, to leave P(N(t) = n) = e−λt (λt)
n

n! .
So it remains to prove (4.2). We can rewrite (4.2) as

Gn(t) = P(Sn > t) = 1− P(Sn ≤ t) =
n−1
∑

r=0

e−λt
(λt)r

r!
.
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How can {Sn > t} occur? Either we need X1 > t (the first waiting time on its own is longer than
t) or, if X1 ≤ t, we need X2 + · · ·+Xn > t−X1. So by conditioning on the value of X1,

P(Sn > t) = P(X1 > t) +

∫ t

0
P(X2 + · · ·+Xn > t− x)fX1

(x)dx

= e−λt +

∫ t

0
λe−λxP(X2 + · · ·+Xn > t− x)dx,

since X1 has an exponential distribution. Now we use the fact that X2 + · · · + Xn has the same
distribution as X1 + · · ·+Xn−1 = Sn−1 to get

Gn(t) = e−λt +

∫ t

0
λe−λxGn−1(t− x)dx.

Now we can verify (4.2) by substituting in Gn−1(t) =
∑n−2

r=0 e
−λt (λt)

r

r! into this integral:

e−λt +

∫ t

0
λe−λxGn−1(t− x)dx = e−λt + λe−λt

n−2
∑

r=0

λr

r!

∫ t

0
(t− x)rdx

= e−λt + λe−λt
n−2
∑

r=0

λr

r!

tr+1

r + 1

= e−λt +

n−2
∑

r=0

e−λt
(λt)r+1

(r + 1)!

= e−λt +
n−1
∑

r=1

e−λt
(λt)r

r!
,

by a change of variable in the sum. The term outside the sum can then be brought inside as an
r = 0 term in the sum, so we verify that

Gn(t) =

n−1
∑

r=0

e−λt
(λt)r

r!
,

as required.

4.3 Limiting behaviour of N(t)

Since the Xi are i.i.d. with finite positive mean µ, the strong law of large numbers implies that as
n→∞,

Sn

n
→ µ ∈ (0,∞),

with probability 1. This means that for any t ≥ 0, Sn > t for all n larger than some (random)
n0. So for any t, N(t) <∞ with probability 1. In other words, in a finite time we cannot have an
infinite number of arrivals!

By definition, N(t) is nondecreasing, and in fact it is not hard to show that N(t) → ∞ as
t→∞. In fact we can show the following.
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Theorem 4.3. As t→∞,
N(t)

t
→ 1

µ
,

with probability 1.

Proof. The basic idea is to “invert” the strong law of large numbers. The SLLN says that for any
ε > 0, there is some n0 (finite, with probability 1) such that Sn ≤ n(µ+ ε) for all n ≥ n0. Then

N(t) =
∞
∑

n=1

1{Sn ≤ t} ≥
∞
∑

n=n0

1{n(µ+ ε) ≤ t}.

Now n(µ+ ε) ≤ t occurs for all n ≤ b t
µ+ε
c, where bxc is the nearest integer of value at most x. So

N(t) ≥ b t

µ+ ε
c − n0.

Dividing through by t, n0/t → 0 as t → ∞ while 1
t
b t
µ+ε
c → 1

µ+ε
. Since ε > 0 was arbitrary, it

follows that for any ε′ > 0,
N(t)

t
≥ 1

µ
− ε′,

for all t large enough, with probability 1. A similar argument in the other direction completes the
proof.

4.4 The renewal function U(t)

Theorem 4.3 is useful, but it is not the whole story. Often, we are interested in the mean value

E(N(t)). Theorem 4.3 does not tell us anything about E(N(t)) directly, although it makes it
plausible that E(N(t)) should grow like t/µ.

We call E(N(t)) the renewal function (viewed as a function of t), and write

U(t) = E(N(t)).

Note that

U(t) = E

∞
∑

n=1

1{Sn ≤ t} =
∞
∑

n=1

P(Sn ≤ t) =
∞
∑

n=1

P(N(t) ≥ n), (4.3)

where the middle equality uses the linearity property of expectation.

Example. The Poisson process. Since N(t) ∼ Po(λt), we know that U(t) = λt. Note that formula
(4.3) in this case gives

λt =
∞
∑

n=1

(

1−
n−1
∑

r=0

e−λt
(λt)r

r

)

,

which takes a bit of calculation to check! (Note the the terms in the r-sum are Poisson probabilities.)
So in this case U(t)/t→ λ, where λ = 1/µ.

Suppose that the interrarival distribution F has a density function f , so F ′(t) = f(t). By
conditioning on the first arrival of the process, we can write

U(t) = E(N(t)) =

∫

∞

0
E(N(t) | X1 = x)f(x)dx;

this is a continuous version of the law of total probability. But given X1 = x,
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• N(t) = 0 if x > t, since this means no arrivals by time t;

• if x ≤ t, we have 1 arrival (the first) plus however many arrive between times x and t (an
interval of length t− x).

So we have

E(N(t) | X1 = x) =

{

0 if x > t

1 + E(N(t− x)) if x ≤ t
.

Hence

U(t) =

∫ t

0
(1 + U(t− x))f(x)dx.

Expanding the bracket we see

U(t) = F (t) +

∫ t

0
f(x)U(t− x)dx,

which is called the renewal equation for continuous interarrival distributions.
Let us now consider the discrete case. Suppose that the Xi are discrete with P(Xi = k) = pk,

k = 1, 2, 3, . . .,
∑

k pk = 1. So F (t) = P(Xi ≤ t) =
∑t

k=1 pk. For t = 1, 2, . . ., using the law of total
probability, we get

U(t) =

∞
∑

k=1

P(X1 = k)E(N(t) | X1 = k) =

∞
∑

k=t+1

0 · pk +
t
∑

k=1

pk(1 + U(t− k))

=

t
∑

k=1

pk +

t−1
∑

k=1

pkU(t− k),

since U(0) = 0. This is called the renewal equation for discrete interarrival distributions. Collecting
the two we have the following result.

Theorem 4.4. • Renewal equation: continuous case. Suppose that the Xi are continuous with

density function f . Then for t ≥ 0,

U(t) = F (t) +

∫ t

0
f(x)U(t− x)dx. (4.4)

• Renewal equation: discrete case. Suppose that the Xi are discrete with P(Xi = k) = pk,
k = 1, 2, 3, . . .,

∑

k pk = 1. Then for n = 0, 1, 2, . . .,

U(n) = F (n) +

n−1
∑

k=1

pkU(n− k). (4.5)

In the discrete case, we can now solve (4.5) iteratively to get

U(1) = F (1) = p1;

U(2) = F (2) + p1U(1);

U(3) = F (3) + p1U(2) + p2U(1);

and so on.
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Example. Consider the specific example with

p1 = 0.1, p2 = 0.4, p3 = 0.3, p4 = 0.2.

Then
U(1) = 0.1, U(2) = 0.5 + 0.01 = 0.51, U(3) = 0.8 + 0.051 + 0.04 = 0.891,

and carrying on

U(4) = 1 + 0.0891 + 0.204 + 0.03 = 1.3231, U(5) = 1.6617 . . . .

In many continuous cases, given F (and f) one can solve for U . We will not discuss general
techniques for solving (4.4) here; instead we give some examples.

Example. Poisson process. We know N(t) ∼ Po(λt) so U(t) = λt, F (t) = 1 − e−λt, and f(t) =
λe−λt. We can check that the renewal equation holds in this case. The right-hand side of (4.4) is

F (t) +

∫ t

0
λ(t− x)f(x)dx = F (t) +

∫ t

0
λtf(x)dx−

∫ t

0
λxf(x)dx

= (1 + λt)F (t)− λ2

∫ t

0
xe−λxdx.

Integrating by parts we get

λ2

∫ t

0
xe−λxdx = −λte−λt +

∫ t

0
λe−λxdx = −λte−λt + F (t).

So the right-hand side of (4.4) is

λt(1− e−λt) + λte−λt = λt = U(t),

as expected, verifying (4.4).

Example. Uniform interarrivals. Suppose that Xi have the uniform distribution on (0, 1), so that
F (x) = x for x ∈ (0, 1) and f(x) = 1 for x ∈ (0, 1). In this example we evaluate U(t) for t ∈ [0, 1]
(the case where t > 1 is more complicated). In this case, (4.4) says that

U(t) = t+

∫ t

0
U(t− x)dx

= t+

∫ t

0
U(y)dy,

using the change of variables y = t− x. Differentiating we get

d

dt
U(t) = 1 + U(t).

We can solve this differential equation for U by putting h(t) = 1+U(t). Then d
dth(t) = h(t), which

has the general solution h(t) = Aet for some constant A. The fact that U(0) = 0 fixes A as being
equal to 1. So h(t) = et, which translates as

U(t) = et − 1, 0 ≤ t ≤ 1.

The following result is known as the Elementary Renewal Theorem. We do not prove it here.

37



Theorem 4.5. Suppose that E(Xi) = µ ∈ (0,∞). Then as t→∞,

U(t)

t
→ 1

µ
.

Example. Let us return to the example of the uniform interarrivals. We have E(Xi) = 0.5. Then
as t→∞,

U(t)

t
→ 2.

4.5 Renewal-reward processes

In this section we consider an extension to the basic renewal model, in which each arrival is as-
sociated with some (random) quantity, which traditionally gets called a reward. We assume that
R1, R2, . . . are independent, positive random variables with a common distribution and finite mean

E(Ri) = r.

The ith arrival comes associated with a corresponding reward Ri (the ‘reward’ might actually be
negative, i.e., a cost). The quantity of interest is now the renewal-reward process

R(t) =

N(t)
∑

n=1

Rn =
∞
∑

n=1

Rn1{Sn ≤ t},

the total accumulated reward up to time t. The ordinary renewal counting process N(t) is the
special case Ri ≡ 1.

Note that the Ri are allowed to depend on the Xi.

Example. Insurance claims. Insurance claims are made at the times of a renewal process S1, S2, . . ..
The corresponding sizes of the claims are R1, R2, . . .. The total liability by time t is described by
the renewal-reward process R(t).

The central result of renewal-reward theory is the following, which can be seen as an extension
of the Elementary Renewal Theorem (Theorem 4.5).

Theorem 4.6. Consider a renewal-reward process with E(Ri) = r and E(Xi) = µ for finite positive

r and µ. Then

lim
t→∞

E(R(t))

t
=

r

µ
.

If we say that a cycle is completed every time that a renewal occurs, this result says that the
long-run average reward per unit time is equal to the expected reward earned during a cycle, divided
by the expected length of a cycle. Also note that while we have been talking of the reward as being
‘earned’ at the time of a renewal, the result remains valid when the reward is earned gradually
throughout a cycle, which is the case in many applications.

Example. Buying a car. The lifetime of a car is a continuous random variable L with distribution
function H(x) = P(L ≤ x) and density function h(x) = H ′(x). Suppose that you have the following
policy for replacing your car: you buy a new car as soon as the old one either breaks down or reaches
age T (for some fixed T > 0). A new car costs C1 and a breakdown incurs an additional cost of
C2. What is long-run average cost of this policy?
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Define a renewal process by the times at which you buy a new car. We apply the renewal-reward
theorem (with costs instead of rewards) to see that the long-run average cost is

E(cost incurred during one cycle)

E(length of a cycle)
.

The cost incurred during a cycle is C1 (cost of a new car) plus either 0 if X > T (no breakdown)
or C2 if X ≤ T (breakdown), so the expected cost incurred over a cycle is

C1 + C2P(X ≤ T ) = C1 + C2H(T ).

The length of a cycle is min{X,T}, so the expected length of a cycle is

∫ T

0
xh(x)dx+

∫

∞

T

Th(x)dx =

∫ T

0
xh(x)dx+ T (1−H(T )).

So the long-run average cost is

C1 + C2H(T )
∫ T

0 xh(x)dx+ T (1−H(T ))
.

Suppose that C1 = 6 and C2 = 1 (in some units), and that L is uniform on (0, 1). What is the best
choice of T?

We only need to consider T ≤ 1. Then the long-run average cost is

6 + T
∫ T

0 xdx+ T (1− T )
=

6 + T

T (1− (T/2))
.

Some calculus shows that this is minimized at T = 4
√
3−6 ≈ 0.928, giving a cost of 13.9. Compare

this to the case of T = 1 (never replace until the car breaks down), which gives a cost of 14.
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