
Chapter 5

Queueing theory

All our queues will be Markov processes, and for this we need to have exponential service times.
Let Y (≥ 0) denote the duration of a service. It has the exponential distribution with parameter
µ > 0. The probability density function is f(t) = µe−µt for t ≥ 0 and f(t) = 0 for t < 0. It is
known that

E(Y ) =
1

µ
, Var(Y ) =

1

µ2
.

A useful feature to note is that for any positive number c,

P(Y > c) =

∫

∞

c

µe−µt dt = e−µc.

Applying this gives, for h a small positive number,

P(Y > c+ h | Y > c) =
P(Y > c+ h)

P(Y > c)
= e−µh = 1− µh+ o(h) ≈ 1− µh.

This can be interpreted as, given that a service is in progress at time c, then the probability that
it is still in progress at time c+ h is approximately 1−µh. This does not depend on the value of c,
i.e. the process ‘has no memory’ of when the service started. The probability that the service is
completed within time h is approximately µh. So µ can be interpreted as the completion-of-service

rate. We use this idea to set up differential equations for queues with exponential service times.

5.1 M/M/1

This notation represents a queue with Poisson arrivals, exponential service times and a single server.
The queue discipline is first-come first-served. We denote the arrival rate by λ and the service rate
by µ per unit time.

Let Xt be the number of the customers in the queueing system at time t and we call Xt the
queue size. It should be emphasized that the queue size will always include the customer being
served if there is one. So queue size 0 means that there are no customers present, queue size 1
means that there is one customer who is being served but no one is waiting, etc. Let Pn(t) denote
the probability that there are n customers in the queueing system at time t. That is

Pn(t) = P(Xt = n), n = 0, 1, 2, · · · .

We shall set up differential equations for Pn(t) and find the stationary distribution of queue size.
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First consider the event that the queue size is 0 at time t + h, where h is small and positive.
Then there might have been queue size 0 at time t with no arrivals during the small interval,
which has probability 1−λh+o(h), or the queue size might have been 1 at time t with no arrivals
during the small interval but the service of the one customer was completed, which has probability
(1− λh+ o(h))(µh+ o(h)) = µh+ o(h). Other possibilities involve two or more events of arrivals
or departures and have probability o(h). In terms of mathematical equations,

P(Xt+h = 0) = P(Xt = 0)P(no arrivals during [t, t+ h] | Xt = 0)

+ P(Xt = 1)P(no arrivals and 1 departure during [t, t+ h] | Xt = 1)

+ P(two or more events of arrivals or departures)

= P(Xt = 0)(1− λh+ o(h)) + P(Xt = 1)(1− λh+ o(h))(µh+ o(h)) + o(h)

= P(Xt = 0)(1− λh) + P(Xt = 1)µh+ o(h).

Rearranging gives
P0(t+ h)− P0(t) = −λhP0(t) + µhP1(t) + o(h).

Dividing both sides by h and letting h→ 0+ gives

P ′0(t) = −λP0(t) + µP1(t). (5.1)

For n ≥ 1, we have

P(Xt+h = n) = P(Xt = n− 1)P(1 arrival and no departures during [t, t+ h] | Xt = n− 1)

+ P(Xt = n)P(no arrivals and no departures during [t, t+ h] | Xt = n)

+ P(Xt = n+ 1)P(no arrivals and 1 departure during [t, t+ h] | Xt = n+ 1)

+ P(two or more events of arrivals or departures)

= P(Xt = n− 1)(λh+ o(h))(1− µh+ o(h))

+ P(Xt = n)(1− λh+ o(h))(1− µh+ o(h))

+ P(Xt = n+ 1)(1− λh+ o(h))(µh+ o(h))

+ o(h)

= P(Xt = n− 1)λh+ P(Xt = n)(1− λh− µh) + P(Xt = n+ 1)µh+ o(h).

Rearranging gives

Pn(t+ h)− Pn(t) = λhPn−1(t)− (λ+ µ)hPn(t) + µhPn+1(t) + o(h).

Dividing both sides by h and letting h→ 0+ gives

P ′n(t) = λPn−1(t)− (λ+ µ)Pn(t) + µPn+1(t). (5.2)

We look for a stationary distribution of queue size. In the stationary situation, Pn(t) will not
change with t and so we may write Pn(t) = Pn. Noting that P ′n(t) = 0, we get from (5.1) and (5.2)
that

−λP0 + µP1 = 0,

λPn−1 − (λ+ µ)Pn + µPn+1 = 0, n ≥ 1.

Rearranging gives

−λP0 + µP1 = 0,

−λPn + µPn+1 = −λPn−1 + µPn, n ≥ 1.
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These imply
−λPn + µPn+1 = 0,

namely

Pn+1 =
λ

µ
Pn for all n ≥ 0.

Therefore

Pn =
(λ

µ

)n

P0 for all n ≥ 0.

The probabilities are in geometric progression. The series will converge if and only if the common
ratio λ/µ is less than 1. This means that λ < µ, i.e. that the rate at which the customers arrive is
less than the rate at which the services are completed. There is a stationary distribution only in
this case. If λ ≥ µ the queue size will tend to infinity, because the server is unable to cope.

When λ < µ, we have

1 =

∞
∑

n=0

Pn = P0

∞
∑

n=0

(λ

µ

)n

=
P0

1− λ/µ
=

µP0

µ− λ
.

This gives P0 = (µ− λ)/λ and the stationary distribution

Pn =
µ− λ

λ

(λ

µ

)n

, n ≥ 0.

Let X denote the queue size at the stationary situation. The mean queue size is

E(X) =

∞
∑

n=0

nPn =
µ− λ

λ

∞
∑

n=1

n
(λ

µ

)n

.

Recalling that
∑n

n=1
nxn = x/(1− x)2 for x ∈ (0, 1), we get

E(X) =
µ− λ

λ

λ/µ

(1− λ/µ)2
=

µ

µ− λ
.

Let W denote the number of the customers who are waiting for service at the stationary situation.
This is the number of the customers who are really queueing. Clearly, W has the probability
distribution

P(W = 0) = P0 + P1 and P(W = n) = Pn+1 for n ≥ 1.

So the mean of the real queue size is

E(W ) =
∞
∑

n=0

nP(W = n) =
∞
∑

n=1

nPn+1 =
µ− λ

µ

∞
∑

n=1

n
(λ

µ

)n

=
µ− λ

µ

λ/µ

(1− λ/µ)2
=

λ

µ− λ
.

5.2 M/M/1 with baulking

The same model except that any customer who would arrive when the queue size is a given number
K does not actually join the queue, but disappears from the system. This can be used to model
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the situation of a waiting room of limited capacity (K−1). The same equations as before, namely
(5.1 and (5.2), work for n ≤ K−1. But, for n = K,

P(Xt+h = K) = P(Xt = K − 1)P(1 arrival and no departures during [t, t+ h] | Xt = K − 1)

+ P(Xt = K)P(no departures during [t, t+ h] | Xt = K)

+ P(two or more events of arrivals or departures)

= P(Xt = K − 1)(λh+ o(h))(1− µh+ o(h))

+ P(Xt = K)(1− µh+ o(h))

+ o(h)

= P(Xt = K − 1)λh+ P(Xt = K)(1− µh) + o(h).

Rearranging gives
PK(t+ h)− PK(t) = λhPK−1(t)− µhPK(t) + o(h).

Dividing both sides by h and letting h→ 0+ gives

P ′K(t) = λPK−1(t)− µPK(t). (5.3)

For the stationary distribution Pn (0 ≤ n ≤ K), we have

−λP0 + µP1 = 0,

λPn−1 − (λ+ µ)Pn + µPn+1 = 0, 1 ≤ n ≤ K − 1,

λPK−1 − µPK = 0.

Rearranging gives

−λP0 + µP1 = 0,

−λPn + µPn+1 = −λPn−1 + µPn, 1 ≤ n ≤ K − 1,

−λPK−1 + µPK = 0.

These imply
−λPn + µPn+1 = 0,

namely

Pn+1 =
λ

µ
Pn for 0 ≤ n ≤ K − 1.

Therefore

Pn =
(λ

µ

)n

P0 for 0 ≤ n ≤ K.

So the probabilities form a (finite) geometric progression with common ratio λ/µ. The possible
queue sizes are {0, 1, . . . , K}. There is no restriction on λ, µ. When λ 6= µ, it is easy to show

Pn =
1− λ/µ

1− (λ/µ)K+1

(λ

µ

)n

, 0 ≤ n ≤ K.

Hence the probability that a potential customer baulks (i.e. tries to arrive when the queue size
is K and so is lost from the queue) is

PK =
1− λ/µ

1− (λ/µ)K+1

(λ

µ

)K

.

When λ = µ, we have the uniform distribution

Pn =
1

1 +K
, 0 ≤ n ≤ K.
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5.3 M/M/∞

Here there are infinitely many servers. It can be used to model a telephone switchboard where
there are plenty of lines available for the calls that may be made. There is no waiting, because each
call is connected as soon as it arrives. The queue size is just the number of calls in progress.

In the same way as in M/M/1, we can show

P ′0(t) = −λP0(t) + µP1(t). (5.4)

For n ≥ 1, we observe that when the queue size is n, the probability that one of the calls is finished
in a short interval of length h is nµh+ o(h). Therefore

P(Xt+h = n) = P(Xt = n− 1)P(1 arrival and no departures during [t, t+ h] | Xt = n− 1)

+ P(Xt = n)P(no arrivals and no departures during [t, t+ h] | Xt = n)

+ P(Xt = n+ 1)P(no arrivals and 1 departure during [t, t+ h] | Xt = n+ 1)

+ P(two or more events of arrivals or departures)

= P(Xt = n− 1)(λh+ o(h))(1− (n− 1)µh+ o(h))

+ P(Xt = n)(1− λh+ o(h))(1− nµh+ o(h))

+ P(Xt = n+ 1)(1− λh+ o(h))((n+ 1)µh+ o(h))

+ o(h)

= P(Xt = n− 1)λh+ P(Xt = n)(1− λh− nµh) + P(Xt = n+ 1)(n+ 1)µh+ o(h).

Rearranging gives

Pn(t+ h)− Pn(t) = λhPn−1(t)− (λ+ nµ)hPn(t) + (n+ 1)µhPn+1(t) + o(h).

Dividing both sides by h and letting h→ 0+ gives

P ′n(t) = λPn−1(t)− (λ+ nµ)Pn(t) + (n+ 1)µPn+1(t). (5.5)

As before we look for a stationary solution Pn, for which the derivatives are 0. We get from (5.4)
and (5.5) that

−λP0 + µP1 = 0,

λPn−1 − (λ+ nµ)Pn + (n+ 1)µPn+1 = 0, n ≥ 1.

Rearranging gives

−λP0 + µP1 = 0,

−λPn + (n+ 1)µPn+1 = −λPn−1 + nµPn, n ≥ 1.

These imply
−λPn + (n+ 1)µPn+1 = 0,

namely

Pn+1 =
λ

(n+ 1)µ
Pn for all n ≥ 0.

Therefore

Pn =
1

n!

(λ

µ

)n

P0 for all n ≥ 0.
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But
∞
∑

n=0

Pn = P0

∞
∑

n=0

1

n!

(λ

µ

)n

= P0 exp(λ/µ).

This implies P0 = exp(−λ/µ) and

Pn =
1

n!

(λ

µ

)n

exp(−λ/µ), n ≥ 0.

This is a Poisson distribution with parameter λ/µ.

5.4 M/M/s

Similar queue with s servers. This is a kind of hybrid of the M/M/1 and M/M/∞. So long as
the number of customers in the system is no greater than s, there is no waiting. When further
customers arrive they wait until a server becomes free. The completion of service rate is nµ when
the queue size is n ≤ s and sµ when the queue size n ≥ s. The differential equations for Pn(t) are

P ′0(t) = −λP0(t) + µP1(t),

P ′n(t) = λPn−1(t)− (λ+ nµ)Pn(t) + (n+ 1)µPn+1(t), for 1 ≤ n < s,

P ′n(t) = λPn−1(t)− (λ+ sµ)Pn(t) + sµPn+1(t), for n ≥ s.

The stationary distribution Pn is given by

Pn =
1

n!

(λ

µ

)n

P0, for 0 ≤ n ≤ s,

Ps+k =
( λ

sµ

)k

Ps, for k ≥ 1.

The first part of this is like a Poisson distribution and after n = s it is a Geometric distribution
with common ratio λ/(sµ). To get a stationary distribution we require λ < sµ for convergence.
This says that the arrival rate must be less than the rate at which the s servers can work.

Example. A queue has three servers, arrival rate 2 and completion-of-service rate 1. Find the
stationary distribution of queue size, the probability that a customer has to wait, and the mean
waiting time.

Here λ = 2, µ = 1, s = 3. For the stationary distribution, we have

P1 = 2P0, P2 =
1

2!
22P0, P3 =

1

3!
23P0 and P3+k =

(2

3

)k 23

3!
P0 for k ≥ 1.

The sum of the probabilities is

P0

[

1 + 2 + 2 +
4

3

(

1 +
2

3
+

(2

3

)2

+ · · ·
)]

= P0

(

5 +
4

3

1

1− 2/3

)

= 9P0.

So P0 =
1

9
, and the stationary probabilities are

1

9
,
2

9
,
2

9
,

4

27
,

4

27

(2

3

)

,
4

27

(2

3

)2

, · · · .

The probability that a customer has to wait is probability that queue size is more than 2 when
(s)he arrives, which is

1−
(1

9
+

2

9
+

2

9

)

=
4

9
.
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To get the mean waiting time, we observe that if the quene size is less than 3 when a customer
arrives, (s)he will be served immeadiately so the waiting time is 0; but if the queue size is 3, (s)he
has to wait for 1/3 units of time as the mean time between service completions when all three servers
are occupied is 1/3; and if the queue size is 4, (s)he has to wait for 2/3, and so on. Therefore

the mean waiting time = 0× (P0 + P1 + P2) +
1

3
P3 +

2

3
P4 + · · ·

=
4

27
×

1

3

[

1 + 2
(2

3

)

+ 3
(2

3

)2

+ · · ·
]

=
4

81
×

1

(1− 2/3)2

=
4

9
.
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