Probability

Basic Definitions

- Sample space: the set of all possible outcomes of an experiment.
- Sample point: a possible outcome.
- Event: a collection of sample points with a common property.
- Probability of a sample point: the probability of a sample point x is the proportion of occurrences of the sample point in a long series of experiments and is denoted by $P(x)$.
- Probability of an event: the probability of an event A is the sum of the probabilities of the sample points which constitute the event and is denoted by $P(A)$, that is

$$
P(A)=\sum_{x \in A} P(x) .
$$

- Equally likely sample points: all sample points in the sample space have the same probability. In this case,

$$
P(A)=\frac{\text { the number of sample points in } A}{\text { the total number of sample points in the sample space }}
$$

Types of Events

- Union (or sum) of events $E_{1}+E_{2}=E_{1} \cup E_{2}$: at least one of the events occurs.
- Intersection of events $E_{1} E_{2}=E_{1} \cap E_{2}$: both events occurs. It is useful to know that

$$
P\left(E_{1}+E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} E_{2}\right)
$$

- Mutually exclusive events $E_{1} E_{2}=\emptyset$ (empty set): the events have no common sample points. In this case,

$$
P\left(E_{1}+E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right) .
$$

Conditional Probability

The conditional probability of E_{1}, given that E_{2} has occurred, is written $P\left(E_{1} \mid E_{2}\right)$ and read as $P\left(E_{1}\right.$ given $\left.E_{2}\right)$. The conditional probability is computed by

$$
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} E_{2}\right)}{P\left(E_{2}\right)} .
$$

If all sample points are equally likely to occur, then

$$
P\left(E_{1} \mid E_{2}\right)=\frac{\text { the number of sample points in } E_{1} E_{2}}{\text { the total number of sample points in } E_{2}} .
$$

Independent Events Two events, E_{1} and E_{2} are said to be independent if and only if

$$
P\left(E_{1} E_{2}\right)=P\left(E_{1}\right) P\left(E_{2}\right)
$$

or $P\left(E_{1} \mid E_{2}\right)=P\left(E_{1}\right)$ or $P\left(E_{2} \mid E_{1}\right)=P\left(E_{2}\right)$. Thus the knowledge that event E_{2} has occurred has no effect on the probability of event E_{1} and vice versa.

Dependent Events Two events, E_{1} and E_{2} are said to be dependent if they are not independent. It is useful to know that

$$
P\left(E_{1} E_{2}\right)=P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right)=P\left(E_{2}\right) P\left(E_{1} \mid E_{2}\right) .
$$

Opposite Events (or Complements)

The opposite event (or the complement) of A is denoted by \bar{A}, and

$$
P(\bar{A})=1-P(A) .
$$

