Significance Tests

Basic Concepts

A hypothesis test consists of the following 4 parts:

- null hypothesis H_0 ,
- alternative hypothesis H_1 (or H_a),
- test statistic,
- rejection region.

Any hypothesis test may have two types of error:

- type I error: reject H_0 when it is true;
- type II error: accept H_0 when it is false.

Define

$$\alpha = P(\text{type I error}), \qquad \beta = P(\text{type II error}).$$

 α is called the *significance level*, which is usually given, e.g. $\alpha = 0.10, 0.05$ or 0.01, while $1 - \beta$ is called the *power of test*. Normally $1 - \beta \ge 80\%$ is acceptable. It is not easy to compute the power of a test so we will not discuss it furthermore in this course.

Hypothesis Test and Confidence Interval for the Mean of a Normal Population

Assumptions: Population is $N(\mu, \sigma^2)$, where μ is unknown while σ^2 may or may not be known.

Sample: A random sample of size n

$$x_1, x_2, \cdots, x_n$$

is taken from the population. Compute sample mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2} \right]$$

and sample deviation

$$s = \sqrt{s^2}.$$

<u>CASE 1</u>: σ known

Hypothesis test (given the significance level α):

$$H_{0}: \mu = \mu_{0}$$

$$H_{1}: \underbrace{\mu \neq \mu_{0}}_{2-\text{tailed}} \quad \text{or} \quad \underbrace{\mu > \mu_{0} \quad \text{or} \quad \mu < \mu_{0}}_{1-\text{tailed}}$$
Test statistic:
$$z = \frac{\bar{x} - \mu_{0}}{\sigma/\sqrt{n}}$$

Rejection region: reject H_0 at the significance level α if

 $|z| > z_{\alpha/2}$ in the case of H_1 : $\mu \neq \mu_0$, $z > z_{\alpha}$ in the case of H_1 : $\mu > \mu_0$, $z < -z_{\alpha}$ in the case of H_1 : $\mu < \mu_0$.

Confidence interval:

 $(1 - \alpha)$ 100% confidence interval for μ is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

<u>CASE 2</u>: σ unknown

Hypothesis test (given the significance level α):

 $H_0: \mu = \mu_0$ $H_1: \underbrace{\mu \neq \mu_0}_{2-\text{tailed}} \quad \text{or} \quad \underbrace{\mu > \mu_0 \quad \text{or} \quad \mu < \mu_0}_{1-\text{tailed}}$ Test statistic: $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$

which is a *t*-distribution with n - 1 degrees of freedom (d.f. = n - 1). Rejection region: reject H_0 at the significance level α if

 $|t| > t_{\alpha/2,n-1}$ in the case of H_1 : $\mu \neq \mu_0$,

- $t > t_{\alpha,n-1}$ in the case of $H_1: \mu > \mu_0$,
- $t < -t_{\alpha,n-1}$ in the case of H_1 : $\mu < \mu_0$.

Confidence interval:

 $(1 - \alpha)$ 100% confidence interval for μ is

$$\bar{x} \pm t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}.$$

Chi-Square Test

The chi-square goodness-of-fit test can be used to perform hypothesis tests about the percentage distribution of a population or the probability distribution of a random variable. More precisely, we wish to test if a population has the following probability distribution

For this purpose, we perform an experiment which consists of n independent and idential trials. The outcome of each trial falls into one of k cells of course. Let n_i denote the number of trials in which the outcome falls in cell i. That is

whence $n_1 + \cdots + n_k = n$. To test

 H_0 : the population has the specified probability distribution;

 H_1 : the population does not have the specified probability distribution,

we use the test statistic

$$X^{2} = \sum_{i=1}^{k} \frac{(n_{i} - np_{i})^{2}}{np_{i}},$$

which follows a χ^2 -distribution with k-1 d.f. Given the significance level α , we reject H_0 if

$$X_2 > \chi^2(\alpha).$$