Regression and Correlation

Least squares linear regression Given n pairs of measurements on two variables x and y:

we first plot them to get a rough idea of the relationship (if any) between x and y. Suppose we see a linear relationship and would like to fit a straight line

$$y = a_0 + a_1 x$$

to the data. Our task is to find estimates of a_0 and a_1 such that the line gives a good fit. One way of doing this is by the *method of least squares*. Denote by \hat{a}_0 and \hat{a}_1 the least squares estimates of a_0 and a_1 , respectively. The line

$$\hat{y} = \hat{a}_0 + \hat{a}_1 x$$

is called the *least square linear regression* of y on x. The least squares estimates \hat{a}_0 and \hat{a}_1 can be computed as follows:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2,$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y},$$

$$\hat{a}_1 = \frac{S_{xy}}{S_{xx}},$$

$$\hat{a}_0 = \bar{y} - \hat{a}_1 \bar{x}.$$

Sometimes it is helpful to perform as a table

x	x_1	x_2	$\cdots x_n$	Σx_i
y	y_1	y_2	$\cdots y_n$	Σy_i
x^2	x_1^2	x_{2}^{2}	$\cdots x_n^2$	Σx_i^2
xy	x_1y_1	$x_2 y_2$	$\cdots x_n y_n$	$\Sigma x_i y_i$
y^2	y_1^2	y_{2}^{2}	$\cdots y_n^2$	Σy_i^2

Correlation coefficient

The most important measure of the degree of correlation between two variables is a quantity called the (product moment) *correlation coefficient*

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}},$$

where

$$S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - n\bar{y}^2.$$

It can be shown that $r \in [-1, +1]$. For r = +1, all the observed points lie on a straight line which has a positive slope; for r = -1, all the observed points lie on a straight line which has a negative slope; for r near +1 (resp. -1), there is a strong positive (resp. negative) linear relationship between two variables. The correlation is significantly different from zero at the α level of significance if

$$|r|\sqrt{\frac{n-2}{1-r^2}} \ge t_{\alpha/2,n-2}.$$