The Design and Analysis of Experiments

Completely Randomised Design (CRD)

Aim: To find if there is a significant difference between the population means of c "treatments" ($c \geq 3$).

Data Pattern: n observations are taken on each of c treatments and the resulting data can be tabulated as follows:

	Population mean	Observations	TotalSample mean	
Treatment 1	μ_{1}	$x_{11}, x_{12}, \cdots, x_{1 n}$	T_{1}	\bar{x}_{1}
Treatment 2	μ_{2}	$x_{21}, x_{22}, \cdots, x_{2 n}$	T_{2}	\bar{x}_{2}
\vdots	\vdots	\vdots	\vdots	\vdots
Treatment c	μ_{c}	$x_{c 1}, x_{c 2}, \cdots, x_{c n}$	T_{c}	\bar{x}_{c}

where

$$
T_{i}=\sum_{j=1}^{n} x_{i j}, \quad \bar{x}_{i}=\frac{T_{i}}{n} .
$$

Analysis of Variance (ANOVA): Compute

$$
\begin{aligned}
& T=\sum_{j=1}^{c} T_{j}, \\
& S S_{\text {total }}=\sum_{i=1}^{c} \sum_{j=1}^{n} x_{i j}^{2}-\frac{T^{2}}{c n}, \\
& S S_{\text {treat }}=\frac{1}{n} \sum_{i=1}^{c} T_{i}^{2}-\frac{T^{2}}{c n}, \\
& S S_{\text {error }}=S S_{\text {total }}-S S_{\text {treat }}, \\
& M S_{\text {treat }}=\frac{S S_{\text {treat }}}{c-1}, \\
& M S_{\text {error }}=\frac{S S_{\text {error }}}{c(n-1)} .
\end{aligned}
$$

Arrange them as the one-way ANOVA table:

Source of variation Sum of squares	d.f.	Mean square	F-ratio	
Treatments	$S S_{\text {treat }}$	$c-1$	$M S_{\text {treat }}$	$\frac{M S_{\text {treat }}}{M S_{\text {error }}}$
Error	$S S_{\text {error }}$	$c(n-1)$	$M S_{\text {error }}$	
Total variation	$S S_{\text {total }}$	$c n-1$		

Hypothesis Test:

$H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{c}$ (i.e. treatment means are the same).
$H_{1}: \mu_{i}$ differ (i.e. treatment means are different).
Given the significance level α, find $F_{\alpha, c-1, c(n-1)}$ from the F-distribution table with $\nu_{1}=$ $c-1$ and $\nu_{2}=c(n-1)$. If

$$
F=\frac{M S_{\text {treat }}}{M S_{\text {error }}}>F_{\alpha, c-1, c(n-1)}
$$

reject H_{0} and conclude that the treatment means are significantly different at α level of significance; otherwise do not reject H_{0} and conclude that the treatment means are not significantly different at α level of significance.

Confidence Intervals: Compute

$$
s=\sqrt{M S_{e r r o r}}
$$

The $(1-\alpha) 100 \%$ confidence interval for μ_{i}, the population mean of treatment i is given by

$$
\bar{x}_{i} \pm t_{\alpha / 2, c(n-1)} s \sqrt{\frac{1}{n}}
$$

The $(1-\alpha) 100 \%$ confidence interval for $\mu_{i}-\mu_{j}$, the difference between the population means of treatments i and j is given by

$$
\bar{x}_{i}-\bar{x}_{j} \pm t_{\alpha / 2, c(n-1)} s \sqrt{\frac{2}{n}}
$$

Randomised Block Design (RBD)

Aim: To find (i) if there is a significant difference between the means of c "treatments", and (ii) if there is a significant difference between the means of r "blocks".

Data Pattern:

	Treat 1	\cdots	Treat c	Block total	Block mean
Block 1	x_{11}	\cdots	$x_{1 c}$	B_{1}	\bar{B}_{1}
Block 2	x_{21}	\cdots	$x_{2 c}$	B_{2}	\bar{B}_{2}
\vdots	\vdots		\vdots	\vdots	\vdots
Block r	$x_{r 1}$	\cdots	$x_{r c}$	B_{r}	\bar{B}_{r}
Treat total	T_{1}	\cdots	T_{c}		
Treat mean	\bar{T}_{1}	\cdots	\bar{T}_{c}		

where

$$
\begin{aligned}
B_{i} & =\sum_{j=1}^{c} x_{i j},
\end{aligned} \quad \bar{B}_{i}=\frac{B_{i}}{c}, ~ \begin{aligned}
T_{j=1}^{r} x_{i j}, & \bar{x}_{j}=\frac{T_{j}}{r}
\end{aligned}
$$

$$
\begin{aligned}
& G=\sum_{i=1}^{c} T_{i}, \quad \bar{G}=\frac{G}{r c}, \\
& S S_{\text {total }}=\sum_{i=1}^{r} \sum_{j=1}^{c} x_{i j}^{2}-\frac{G^{2}}{r c}, \\
& S S_{\text {treat }}=\frac{1}{r} \sum_{j=1}^{c} T_{j}^{2}-\frac{G^{2}}{r c}, \\
& S S_{\text {block }}=\frac{1}{c} \sum_{i=1}^{r} B_{i}^{2}-\frac{G^{2}}{r c}, \\
& S S_{\text {error }}=S S_{\text {total }}-S S_{\text {treat }}-S S_{\text {block }}, \\
& M S_{\text {treat }}=\frac{S S_{\text {treat }}}{c-1}, \\
& M S_{\text {block }}=\frac{S S_{\text {block }}}{r-1}, \\
& M S_{\text {error }}=\frac{S S_{\text {error }}}{(r-1)(c-1)} .
\end{aligned}
$$

Arrange them as the ANOVA table:

Source of variation	Sum of squares	d.f.	Mean square	F-ratio
Treatments	$S S_{\text {treat }}$	$c-1$	$M S_{\text {treat }}$	$\frac{M S_{\text {treat }}}{M S_{\text {Srror }}}$
Blocks	$S S_{\text {block }}$	$r-1$	$M S_{\text {block }}$	$\frac{M S_{\text {block }}}{M S_{\text {error }}}$
Error	$S S_{\text {error }}$	$(r-1)(c-1)$	$M S_{\text {error }}$	
Total variation	$S S_{\text {total }}$	$r c-1$		

Hypothesis Tests:

H_{0} : treatment means are the same.
H_{1} : treatment means are different.
Given the significance level α, find $F_{\alpha, c-1,(r-1)(c-1)}$ from the F-distribution table with $\nu_{1}=$ $c-1$ and $\nu_{2}=(r-1)(c-1)$. If

$$
F=\frac{M S_{\text {treat }}}{M S_{\text {error }}}>F_{\alpha, c-1,(r-1)(c-1)}
$$

reject H_{0} and conclude that the treatment means are significantly different at α level of significance; otherwise do not reject H_{0} and conclude that the treatment means are not significantly different at α level of significance.
H_{0} : block means are the same.
H_{1} : block means are different.
Given the significance level α, find $F_{\alpha, r-1,(r-1)(c-1)}$ from the F-distribution table with $\nu_{1}=$ $r-1$ and $\nu_{2}=(r-1)(c-1)$. If

$$
F=\frac{M S_{\text {block }}}{M S_{\text {error }}}>F_{\alpha, r-1,(r-1)(c-1)}
$$

reject H_{0} and conclude that the block means are significantly different at α level of significance; otherwise do not reject H_{0} and conclude that the block means are not significantly different at α level of significance.

Confidence Intervals: Compute

$$
s=\sqrt{M S_{\text {error }}}
$$

The $(1-\alpha) 100 \%$ confidence interval for μ_{j}, the population mean of treatment j, is given by

$$
\bar{T}_{j} \pm t_{\alpha / 2,(r-1)(c-1)} s \sqrt{\frac{1}{r}}
$$

The $(1-\alpha) 100 \%$ confidence interval for $\mu_{j}-\mu_{k}$, the difference between the population means of treatments j and k, is given by

$$
\bar{T}_{j}-\bar{T}_{k} \pm t_{\alpha / 2,(r-1)(c-1)} s \sqrt{\frac{2}{r}}
$$

