The Design and Analysis of Experiments

Completely Randomised Design (CRD)

Aim: To find if there is a significant difference between the population means of c "treatments" ($c \ge 3$).

Data Pattern: n observations are taken on each of c treatments and the resulting data can be tabulated as follows:

	Population	Observations	Total	Sample
	mean			mean
Treatment 1	μ_1	$x_{11}, x_{12}, \cdots, x_{1n}$	T_1	\bar{x}_1
Treatment 2	μ_2	$x_{21}, x_{22}, \cdots, x_{2n}$	T_2	\bar{x}_2
÷	÷	:	:	÷
Treatment c	μ_c	$x_{c1}, x_{c2}, \cdots, x_{cn}$	T_c	\bar{x}_c

where

$$T_i = \sum_{j=1}^n x_{ij}, \quad \bar{x}_i = \frac{T_i}{n}.$$

Analysis of Variance (ANOVA): Compute

$$T = \sum_{j=1}^{c} T_j,$$

$$SS_{total} = \sum_{i=1}^{c} \sum_{j=1}^{n} x_{ij}^2 - \frac{T^2}{cn},$$

$$SS_{treat} = \frac{1}{n} \sum_{i=1}^{c} T_i^2 - \frac{T^2}{cn},$$

$$SS_{error} = SS_{total} - SS_{treat},$$

$$MS_{treat} = \frac{SS_{treat}}{c-1},$$

$$MS_{error} = \frac{SS_{error}}{c(n-1)}.$$

Arrange them as the one-way ANOVA table:

Source of variation	Sum of squares	d.f.	Mean square	F-ratio
Treatments	SS_{treat}	c - 1	MS_{treat}	$\frac{MS_{treat}}{MS}$
Error	SS_{error}	c(n-1)	MS_{error}	Wigerror
Total variation	SS_{total}	cn-1		

Hypothesis Test:

 $H_0: \mu_1 = \mu_2 = \cdots = \mu_c$ (i.e. treatment means are the same). $H_1: \mu_i$ differ (i.e. treatment means are different).

Given the significance level α , find $F_{\alpha,c-1,c(n-1)}$ from the *F*-distribution table with $\nu_1 = c - 1$ and $\nu_2 = c(n-1)$. If

$$F = \frac{MS_{treat}}{MS_{error}} > F_{\alpha,c-1,c(n-1)}$$

reject H_0 and conclude that the treatment means are significantly different at α level of significance; otherwise do not reject H_0 and conclude that the treatment means are not significantly different at α level of significance.

Confidence Intervals: Compute

$$s = \sqrt{MS_{error}}.$$

The $(1 - \alpha)100\%$ confidence interval for μ_i , the population mean of treatment i is given by

$$\bar{x}_i \pm t_{\alpha/2, c(n-1)} s \sqrt{\frac{1}{n}}.$$

The $(1 - \alpha)100\%$ confidence interval for $\mu_i - \mu_j$, the difference between the population means of treatments *i* and *j* is given by

$$\bar{x}_i - \bar{x}_j \pm t_{\alpha/2, c(n-1)} s \sqrt{\frac{2}{n}}.$$

Randomised Block Design (RBD)

Aim: To find (i) if there is a significant difference between the means of c "treatments", and (ii) if there is a significant difference between the means of r "blocks".

Data Pattern:

	Treat 1	• • •	Treat c	Block total	Block mean
Block 1	x_{11}	• • •	x_{1c}	B_1	\bar{B}_1
Block 2	x_{21}	•••	x_{2c}	B_2	\bar{B}_2
:	:		÷	:	÷
Block r	x_{r1}	•••	x_{rc}	B_r	\bar{B}_r
Treat total	T_1	•••	T_{c}		
Treat mean	$\bar{T_1}$	•••	$\bar{T_c}$		

where

$$B_i = \sum_{j=1}^c x_{ij}, \quad \bar{B}_i = \frac{B_i}{c},$$
$$T_j = \sum_{i=1}^r x_{ij}, \quad \bar{x}_j = \frac{T_j}{r}.$$

Analysis of Variance (ANOVA): Compute

$$G = \sum_{i=1}^{c} T_i, \quad \bar{G} = \frac{G}{rc},$$

$$SS_{total} = \sum_{i=1}^{r} \sum_{j=1}^{c} x_{ij}^2 - \frac{G^2}{rc},$$

$$SS_{treat} = \frac{1}{r} \sum_{j=1}^{c} T_j^2 - \frac{G^2}{rc},$$

$$SS_{block} = \frac{1}{c} \sum_{i=1}^{r} B_i^2 - \frac{G^2}{rc},$$

$$SS_{error} = SS_{total} - SS_{treat} - SS_{block},$$

$$MS_{treat} = \frac{SS_{treat}}{c-1},$$

$$MS_{block} = \frac{SS_{block}}{r-1},$$

$$MS_{error} = \frac{SS_{error}}{(r-1)(c-1)}.$$

Arrange them as the ANOVA table:

Source of variation	Sum of squares	d.f.	Mean square	F-ratio
Treatments	SS_{treat}	c-1	MS_{treat}	$\frac{MS_{treat}}{MS_{error}}$
Blocks	SS_{block}	r-1	MS_{block}	$\frac{MS_{block}}{MS_{annual}}$
Error	SS_{error}	(r-1)(c-1)	MS_{error}	in cerror
Total variation	SS_{total}	rc-1		

Hypothesis Tests:

 H_0 : treatment means are the same.

 H_1 : treatment means are different.

Given the significance level α , find $F_{\alpha,c-1,(r-1)(c-1)}$ from the *F*-distribution table with $\nu_1 = c - 1$ and $\nu_2 = (r - 1)(c - 1)$. If

$$F = \frac{MS_{treat}}{MS_{error}} > F_{\alpha,c-1,(r-1)(c-1)}$$

reject H_0 and conclude that the treatment means are significantly different at α level of significance; otherwise do not reject H_0 and conclude that the treatment means are not significantly different at α level of significance.

 H_0 : block means are the same.

 H_1 : block means are different.

Given the significance level α , find $F_{\alpha,r-1,(r-1)(c-1)}$ from the *F*-distribution table with $\nu_1 = r - 1$ and $\nu_2 = (r - 1)(c - 1)$. If

$$F = \frac{MS_{block}}{MS_{error}} > F_{\alpha,r-1,(r-1)(c-1)}$$

reject H_0 and conclude that the block means are significantly different at α level of significance; otherwise do not reject H_0 and conclude that the block means are not significantly different at α level of significance.

Confidence Intervals: Compute

$$s = \sqrt{MS_{error}}.$$

The $(1 - \alpha)100\%$ confidence interval for μ_j , the population mean of treatment j, is given by

$$\bar{T}_j \pm t_{\alpha/2,(r-1)(c-1)} s \sqrt{\frac{1}{r}}.$$

The $(1 - \alpha)100\%$ confidence interval for $\mu_j - \mu_k$, the difference between the population means of treatments j and k, is given by

$$\bar{T}_j - \bar{T}_k \pm t_{\alpha/2,(r-1)(c-1)} s \sqrt{\frac{2}{r}}.$$