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10.1 Definition and basic properties

We now consider stochastic processes that move around on a countable (usually finite) state space S

in discrete time. This means that at each time point an object moves from one position in the state

space to another (or it may stay at the same position). Denote the position at time n by Xn for

n = 0, 1, . . . and Xn ∈ S. We shall assume the Markov property which is defined as follows.

Definition 10.1. The Markov property states that

P(Xn+m = j | Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P(Xn+m = j | Xn = i) (10.1)

for all n ≥ 0, m ≥ 1 and i, j ∈ S. The stochastic process Xn with the Markov property is called a

Markov chain.

Roughly the Markov property states that, given the state at time n, the behaviour after time n is

independent of the behaviour before time n. In order to predict the future behaviour you need to

know the current position, but information about how the process reached the current position (i.e.

previous history) is of no further help.

Setting m = 1 in (10.1) gives

P(Xn+1 = j | Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = j | Xn = i). (10.2)

The right-hand-side term is the probability that the Markov chain transits to state j at time n + 1

given it is in state i at time n. Such a probability is called the (one-step) transition probability and

is denoted by

pij(n) = P(Xn+1 = j | Xn = i).
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If all the transition probabilities are independent of n, the Markov chain is said to be stationary. In

this case, we can drop the n from pij(n) and, clearly, we have

pij = P(Xn+1 = j | Xn = i) for all i, j ∈ S, n ≥ 0,

We shall consider only stationary Markov chains in this course.

The transition probabilities can be put into a square matrix, the rows and columns of which are

indexed by the elements of S. Such matrices are called the (one-step) transition matrices.

Example 10.1. A very simple model for the weather from day to day. If it is raining today then

the probability that it will rain tomorrow is 0.8 . If it is dry today, then the probability that it will

rain tomorrow is 0.4 . The state space S = {rain, dry}. The transition matrix is

P =

( rain dry

rain 0.8 0.2

dry 0.4 0.6

)
.

Example 10.2. A maze used for training rats. There are 5 compartments labelled 1, . . . , 6 and

connecting one or two-way doors. A rat moves in a Markov chain according to the transition matrix

P =


0 1/2 1/2 0 0

1/3 0 1/3 1/3 0

1/3 1/3 0 0 1/3

0 0 0 1 0

0 0 0 0 1

 .

(Because the labels are 1, . . . , 5 it is not necessary to label the rows and columns of the matrix.)
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Example 10.3. Simple random walk with absorbing barriers at ±2 (, also known as drunkard’s

ruin). Here the state space is S = {−2,−1, 0, 1, 2}. States ±2 being absorbing barriers means that

once the object reaches ±2 it remains there. While the object is at one of the intermediate states, the

probabilities of moving one step to the right/left/not moving are p, q, r, given non-negative numbers

with sum 1. Here the transition matrix is

P =



−2 −1 0 1 2

−2 1 0 0 0 0

−1 q r p 0 0

0 0 q r p 0

1 0 0 q r p

2 0 0 0 0 1

.
What do you notice about the transition matrices we have examined?

In fact all the entries are non-negative and each row sum is 1. Such a (square) matrix is called a

stochastic matrix. Note also that, if we denote by 1 the column-vector with entries labelled by

the elements of S and each equal to 1, then P1 = 1. This can be interpreted as 1 is a right

eigenvector of P corresponding to the eigenvalue 1. (Recall that in general λ is an eigenvalue of the

square matrix P if the equation Px = λx has a solution x 6= 0. Then x is a corresponding right

eigenvector.) So stochastic matrices always have the eigenvalue 1.
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Now consider what happens in two steps starting from state i at time n.

p
(2)
ij = P(Xn+2 = j | Xn = i) =

∑
k∈S

P(Xn+2 = j & Xn+1 = k | Xn = i)

=
∑
k∈S

P(Xn+1 = k | Xn = i)×P(Xn+2 = j | Xn+1 = k & Xn = i)

=
∑
k∈S

P(Xn+1 = k | Xn = i)×P(Xn+2 = j | Xn+1 = k)

=
∑
k∈S

pikpkj = (P 2)ij.

So P 2 is the transition matrix that describes movements over two time units. Similarly P n is the

matrix of n-step transition probabilities.

One of the important objects in the study of Markov chains is to study the limiting behaviour of P n

as n→∞. Before we discuss this property, let us discuss how to compute various probabilities in

terms of transition probabilities.

The transition probabilities describe movements of the Markov chain from one state to another.

However, this is not enough to specify the probabilistic behaviour (or law) of the process {Xn}n≥0.

For this purpose, let us define the initial distribution

λi = P(X0 = i), i ∈ S.

We form these as a row vector λ = (λi)i∈S. For example, if S = {0, 1, 2, . . . , N}, then

λ = (λ0, λ1, λ2, . . . , λN).
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Let us now explain that the transition matrix P and the initial distribution λ enable us to find,

at least in principle, any probability connected with the process, such such P(Xn = i) or P(X0 =

i0, . . . , Xn = in). Indeed,

P(Xn = i) =
∑
k∈S

P(X0 = k & Xn = i)

=
∑
k∈S

P(X0 = k)P(Xn = i | X0 = k)

=
∑
k∈S

λkp
(n)
ki .

That is, in the matrix form, the probability distribution of Xn is given

(P(Xn = i))i∈S = λP n. (10.3)

Moreover, compute the joint probability

P(X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = in)

= P(X0 = i0, X1 = i1, . . . , Xn−1 = in−1)

×P(Xn = in | X0 = i0, X1 = i1, . . . , Xn−1 = in−1)

= P(X0 = i0, X1 = i1, . . . , Xn−1 = in−1)P(Xn = in | Xn−1 = in−1)

= P(X0 = i0, X1 = i1, . . . , Xn−1 = in−1)pin−1in.
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Repeating this procedure gives

P(X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = in)

= P(X0 = i0)pi0i1 · · · pin−1in

= λi0pi0i1 · · · pin−1in.

Similarly, the conditional probability

P(X1 = i1, . . . , Xn−1 = in−1, Xn = in | X0 = i0)

= pi0i1 · · · pin−1in.

These show that once the initial distribution λ and the transition matrix P are given, the probability

distributions of the Markov chain {Xn}n≥0 are determined. From now on, we will say that {Xn}n≥0

is Markov (λ, P ).

A particular interesting case is that the chain starts from a state i with probability 1, namely P (X0 =

i) = 1 but P (X0 = j) = 0 if j 6= i. We denote this initial distribution by δi = (δij)j∈S, where δij = 1

if j = i and 0 otherwise. In this case, {Xn}n≥0 is Markov (δi, P ).

Let {Xn}n≥0 be Markov (λ, P ). In the case where λi > 0 we shall write Pi(A) for the conditional

probability P(A | X0 = i). By the Markov property at time 0, under Pi, {Xn}n≥0 is Markov (δi, P ).

So the behaviour of {Xn}n≥0 under Pi does not depend on λ. More generally, we have the following

theorem.

Theorem 10.1. Let {Xn}n≥0 be Markov (λ, P ). Then, conditional on Xm = i, {Xm+n}n≥0 is

Markov (δi, P ) and is independent of the random variables X0, . . . , Xm.
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10.2 Strong Markov property

Theorem 10.1 says that for each time m, conditional on Xm = i, the process after time m begins

afresh from i. Suppose, instead of conditioning on Xm = i, we simply wait for the process to hit state

i at some random time Ti. What can one say about the process after time Ti. What if we replaced

Ti by a more general random time? In this section we shall identify a class of random times at which

a version of the Markov property does hold.

A random variable τ : Ω → {0, 1, 2, . . .} ∪ {∞} is called a stopping time or Markov time if the

event {τ = n} depends only on X0, X1, . . . , Xn for n = 0, 1, 2, . . ..

Let A be a subset of S. The hitting time HA of A is

HA = inf{n ≥ 0 : Xn ∈ A},

where we set inf ∅ =∞ as usual. This is a stopping time because

{HA = n} = {X0 6∈ A, . . . , Xn−1 6∈ A,Xn ∈ A}.

Moreover, the first passage time

Tj = inf{n ≥ 1 : Xn = j}

is a stopping time because

{Tj = n} = {X1 6= j, . . . , Xn−1 6= j,Xn = j}.

The following theorem shows the strong Markov property—the Markov property holds at stopping

times.
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Theorem 10.2. (Strong Markov property) Let {Xn}n≥0 be Markov (λ, P ) and let τ be a

stopping time of {Xn}n≥0. Then, conditional on τ < ∞ and Xτ = i, {Xτ+n}n≥0 is Markov

(δi, P ) and is independent of X0, . . . , Xτ .

Proof Let B ⊂ Ω be an event determined by X0, . . . , Xτ . Clearly, B ∩ {τ = m} is determined by

X0, . . . , Xm. So, by the Markov property at time m,

P
(
{Xτ+1 = j1, . . . , Xτ+n = jn} ∩B ∩ {τ = m} ∩ {Xτ = i}

)
= P

(
{Xm+1 = j1, . . . , Xm+n = jn} | B ∩ {τ = m} ∩ {Xm = i}

)
P
(
B ∩ {τ = m} ∩ {Xτ = i}

)
= Pi(X1 = j1, . . . , Xn = jn)P

(
B ∩ {τ = m} ∩ {Xτ = i}

)
.

Now sum over m = 0, 1, . . . and divide by P(τ <∞, Xτ = i) to obtain

P
(
{Xτ+1 = j1, . . . , Xτ+n = jn} ∩B | τ <∞, Xτ = i}

)
= Pi(X1 = j1, . . . , Xn = jn)P

(
B | τ <∞, Xτ = i

)
as required. �
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10.3 Classification of states

It is sometimes possible to break a Markov chain into smaller pieces, each of which is relatively easy

to understand, and which together give an understanding of the whole. This is done by identifying

the irreducible closed classes.

Definition 10.2. • If pii = 1, then i is an absorbing state.

• A non-empty subset C of the state space is called a closed class if it is not possible to leave C

starting from a state in C, i.e. if pij = 0 for all states i ∈ C and j /∈ C.

• An irreducible closed class C is a closed class such that no proper subset of C is itself closed.

• A Markov chain is irreducible if S is an irreducible closed class, i.e. if there is no closed class

other than S itself.

To identify irreducible closed classes, we introduce the concept of communicating states. We say

that i reaches j if there is an n such that p
(n)
ij > 0. If i and j reach each other, we say that i and j

communicate. Clearly, all states in an irreducible closed class communicate. To determine the closed

classes, we just need to know which elements of P are positive and which 0.

Example 10.1 is irreducible; in Example 10.2, {4}, {5} form two irreducible closed classes; in Exam-

ple 10.3, {−2}, {2} are irreducible closed classes.

Example 10.4. Stock control. Suppose that ordering of new stock takes place at the end of each

week with a policy of not placing an order if there are one or more item remaining in stock and, when

no items remain in stock, of ordering sufficient to meet any unfilled orders and make the stock up to
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three. The weekly demand has a known probability distribution; 0, 1, 2, or 3 with probability 0.2,

0.4, 0.3, 0.1 respectively. The demands in different weeks are independent. We shall define the state

as the number of items in stock at the end of the week, counting unfilled orders as negative. The the

state space is S = {−2,−1, 0, 1, 2, 3}. For example State −2 occurs if there was one item in stock

at the end of the previous week and three items have been demanded. The transition matrix is



−2 −1 0 1 2 3

−2 0 0 .1 .3 .4 .2

−1 0 0 .1 .3 .4 .2

0 0 0 .1 .3 .4 .2

1 .1 .3 .4 .2 0 0

2 0 .1 .3 .4 .2 0

3 0 0 .1 .3 .4 .2


.

This Markov chain is irreducible. We might want to answer questions like: how often is an order

placed, how often are you unable to supply an item from stock, what is the average amount of stock

held?

Example 10.5. Success runs. A coin is tossed independently until five heads in succession have

been obtained. We denote the state here as the number of consecutive heads (up to 5) that have been

obtained on the most recent tosses. S is {0, . . . , 5}. Suppose that the probability of a head is p at
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each toss and denote 1− p by q. The transition matrix is



0 1 2 3 4 5

0 q p 0 0 0 0

1 q 0 p 0 0 0

2 q 0 0 p 0 0

3 q 0 0 0 p 0

4 q 0 0 0 0 p

5 0 0 0 0 0 1


.

Here the state 5 is an absorbing state which forms the unique irreducible closed class {5}. We might

want to answer question: How long does it take on average in order to obtain five heads in succession?

Example 10.6. Ehrenfest urn model for the diffusion of molecules of a gas through a membrane.

There are N particles in a container which has a permeable partition. At each time point one of the

particles chosen at random passes through the partition. Here we record the state as the number of

particles to one side of the partition, so S = {0, . . . , N}. When the state is i, there is probability i/N
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that the next state is i− 1, and probability (N − i)/N that it is i + 1. The transition matrix is



0 1 2 3 . . . N − 1 N

0 0 1 0 0 . . . 0 0

1 1
N 0 N−1

N 0 . . . 0 0

2 0 2
N 0 N−2

N . . . 0 0
... ... ... ... ... ... ...

N 0 0 0 0 . . . 1 0

.
This is an irreducible Markov chain.

This example illustrates one further phenomenon which occurs — periodicity. In Example 10.6 the

states that occur are alternately even and odd. If the process starts for example in state 0 then after

an even number of steps it cannot avoid being in an even-numbered state, while after an odd number

of steps it must be in an odd-numbered state. (We will see that this complicates the description of

the limiting behaviour of P n. In fact there are two limit matrices, one for the even powers and the

other for the odd powers of P .)

We say that a state i has period d if the highest common factor (hcf) of {n : p
(n)
ii > 0} is d. This

means that if the chain is in state i at time n it can only return there at times of the form n + kd

for some integer k. If p
(n)
ii = 0 for all n, we say that state i has infinite period. A state with period 1

is called aperiodic (i.e. it does not have a period). It can be shown that all states in an irreducible

closed class have the same period. Hence, for an irreducible Markov chain, all states have the same

period and we say the chain has the period. If the period is 1 we call the Markov chain aperiodic.

Once again to recognise periodicity it is necessary only to know which entries of P are positive and
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which 0. It is possible to invent Markov chains with any period (Try it.); however any period greater

than 2 will usually be obvious. Where the period is 2, the states can be put into two classes (even/odd,

white/black, etc.) and all steps of the process are from one class into the other, so that the process

alternates between the two classes. Sometimes you will have to think a bit to see whether this is

possible.

Let us now define two more important concepts.

Definition 10.3. A state i is transient if the probability starting from i of never returning to i is

positive. A state i is recurrent if the probability of sooner or later returning to i starting from i is 1.

Obviously, a state i is transient if there is a state j which can be reached from i in one or more steps

from which it is not possible to get back to i.

To establish more criteria on recurrence and transience, we let

f
(n)
ij = Pi(Tj = n)

be the first passage distribution from state i to state j. We have

f
(n)
ij = Pi(Xn = j, Xk 6= j, k = 1, . . . , n− 1).

Define

fij =

∞∑
n=1

f
(n)
ij = Pi(Tj <∞).

From the definition, we see that the state i is recurrent if and only if

fii = Pi(Ti <∞) = 1,
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and it is transient if and only if fii < 1. In particular, every state is either transient or recurrent.

Let us also define inductively the rth passage time T
(r)
i to state i by

T
(0)
i = 0, T

(1)
i = Ti

and, for r = 1, 2, . . .,

T
(r+1)
i = inf{n ≥ T

(r)
i + 1 : Xn = i}.

The length of the rth excursion to i is then

τ
(r)
i =

{
T

(r)
i − T

(r−1)
i if T

(r−1)
i <∞,

0 otherwise.

Lemma 10.1. For r = 2, 3, . . ., conditional on T
(r−1)
i , τ

(r)
i is independent of {Xm : m ≤ T

(r−1)
i }

and

P(τ
(r)
i = n | T (r−1)

i <∞) = Pi(Ti = n).

Proof This is a simple application of the strong Markov property at the stopping time τ = T
(r−1)
i .

Clearly, Xτ = i if τ <∞. So, conditional on τ <∞, {Xτ+n}n≥0 is Markov (δi, P ) and independent

of X0, X1, . . . , Xτ . But

τ
(r)
i = inf{n ≥ 1 : Xτ+n = i},

so τ
(r)
i is the first passage time of {Xτ+n}n≥0 to state i. �

Let us introduce the number of visits to state i:

Vi =

∞∑
n=0

1{Xn=i}.
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Note that

Ei(Vi) = Ei

∞∑
n=0

1{Xn=i} =

∞∑
n=0

Ei(1{Xn=i}) =

∞∑
n=0

Pi(Xn = i) =

∞∑
n=0

p
(n)
ii .

Lemma 10.2. For r = 0, 1, . . ., we have that Pi(Vi > r) = (fii)
r.

Proof We prove it by induction. When r = 0 the assertion holds clearly. Suppose inductively that

the assertion holds for some r ≥ 0. Observing that if X0 = i then {Vi > r + 1} = {T (r+1)
i < ∞},

we compute

Pi(Vi > r + 1) = Pi(T
(r+1)
i <∞)

= Pi(T
(r)
i <∞ and τ

(r+1)
i <∞)

= Pi(τ
(r+1)
i <∞ | T (r)

i <∞)Pi(T
(r)
i <∞)

= fii(fii)
r = (fii)

r+1

by Lemma 10.1. So by induction the assertion holds for all r. �

The following theorem give criteria for recurrence and transience in terms of transition probabilities.

Theorem 10.3. We have :

(i) A state i is recurrent if and only if
∑∞

n=0 p
(n)
ii =∞.

(ii) A state i is transient if and only if
∑∞

n=0 p
(n)
ii <∞.

Proof If i is recurrent, then fii = 1 and, by Lemma 10.2,

Pi(Vi =∞) = lim
r→∞

Pi(Vi > r) = 1
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which implies
∞∑
n=0

p
(n)
ii = Ei(Vi) =∞.

If i is transient, then fii < 1. Recall that one can compute the expectation of a non-negative

integer-valued random variable as follows:

∞∑
r=0

P(ξ > r) =

∞∑
r=0

∞∑
v=r+1

P(ξ = v)

=

∞∑
v=1

v−1∑
r=0

P(ξ = v) =

∞∑
v=1

vP(ξ = v) = E(ξ).

We then compute, by Lemma 10.2, that

∞∑
n=0

p
(n)
ii = Ei(Vi) =

∞∑
r=0

Pi(Vi) =

∞∑
r=0

(fii)
r =

1

1− fii
<∞

as required. �

In the proof above, we also see clearly that a state i is transient if and only if

Pi(Xn = i for infinitely many n) = 0

and that a state i is recurrent if and only if

Pi(Xn = i for infinitely many n) = 1.



SMST C: Probability 10–18

Thus a recurrent state is one to which the chain keeps coming back and a transient states is one which

the chain eventually leaves for ever. The following theorem shows that recurrence and transience are

class properties.

Theorem 10.4. Let C be an irreducible closed class. Then either all states in C are transient

or all are recurrent.

Proof Take any pair of states , j ∈ C and suppose that i is transient. There exist n,m > 0 with

p
(n)
ij > 0 and p

(m)
ji > 0. Noting that for all r ≥ 0,

p
n+r+m)
ii ≥ p

(n)
ij p

(r)
jj p

(m)
ji ,

we have ∞∑
r=0

p
(r)
jj ≤

1

p
(n)
ij p

(m)
ji

∞∑
r=0

p
(r)
ii <∞

by Theorem 10.3. Hence j is also transient by Theorem 10.3 again. �

In the light of this theorem it is natural to speak of a recurrent or transient class.

Theorem 10.5. Every finite irreducible closed class is recurrent.

Proof Suppose C is a finite irreducible closed class and the chain starts in C. Then there must

exist some i ∈ C for which we have

0 < P(Xn = i for infinitely many n)

= P(Xn = i for some n)Pi(Xn = i for infinitely many n)
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by the strong Markov property. This shows that i is recurrent by Theorem 10.3 and hence C is

recurrent by Theorem 10.4. �

In particular, if the state space is finite, then we have:

• the states which are not in any irreducible closed class are all transient;

• all states in an irreducible closed class are recurrent.

Example 10.1 is irreducible and both states are recurrent; in Example 10.2, {5}, {6} are irreducible

closed classes, states 4, 5 are recurrent and states 1, 2, 3 are transient; in Example 10.3, {−2}, {2}
are irreducible closed classes, states −2, 2 are recurrent and states −1, 0, 1 are transient; in Example

10.4, all states are recurrent; in Example 10.5, the state 5 is an absorbing state and the other states

are transient; in Example 10.6, all states are recurrent.

For a recurrent state f
(n)
ii is a probability distribution of the first passage time Ti with mean µi =

Ei(Ti) =
∑∞

n=1 nf
(n)
ii , the mean recurrence time. If µi = ∞, state i is called null, otherwise it is

called positive.
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10.4 Stationary distribution

Definition 10.4. A stationary distribution is a probability distribution π on S, thought of as a

row-vector, such that πP = π. It can also be called an equilibrium or steady state distribution.

Note that π is a left eigenvector corresponding to the eigenvalue 1. It follows from matrix theory that

a Markov chain with finitely many states must have a left eigenvector for the eigenvalue 1. (It is not

so elementary to show that this eigenvector can be take to have its entries all non-negative, so that

division by a suitable constant gives a probability distribution.)

When we use the stationary distribution as initial distribution, namely {Xn}n≥0 is Markov (π, P ),

we see from (10.3) that the probability distribution of Xn

(P(Xn = i))i∈S = πP n = π for all n.

We then say that the distributions of {Xn}n≥0 are time invariant (another name for this is station-

ary). Therefore π is also known as the stationary initial distribution.

Which Markov chains have a stationary distribution? We will restrict attention to irreducible chains,

since any other chain can be decomposed into irreducible subclasses.

Theorem 10.6. An irreducible Markov chain has a stationary distribution if and only if it is

positive recurrent. The stationary distribution is unique and given by πi = µ−1
i .

The proof of this is not given here but can be found in e.g. [2]. When the state space is finite, the

stationary distribution can be obtained by solving linear equations. We look at some of the examples.

In Example 10.1, the Markov chain has a stationary distribution π = (πr, πd) which obeys

π = πP subject to πr + πd = 1,
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namely

πr = 0.8πr + 0.4πd, πd = 0.2πr + 0.6πd, πr + πd = 1.

Solving these equations gives πr = 2/3 and πd = 1/3. In other words, we obtain the stationary

distribution π = (2/3, 1/3).

In Example 10.4, let π = (π−2, π−1, π0, π1, π2, π3) be the stationary distribution. Then

π = πP subject to π−2 + π−1 + π0 + π1 + π2 + π3 = 1.

Solving these equations gives π = (5, 19, 40, 50, 40, 16)/170.

In the case when a Markov chain has only one irreducible closed class C, first identify the periodicity

for the states in the closed class. Then, solve the equations y = yPC with the sum of coefficients

equal to 1, where PC is the transition matrix on the class C. Finally, form the stationary distribution

π = (πi)i∈S by setting πi = yi if i ∈ C or otherwise πi = 0.

Example 10.5 has one absorbing state 5, and the other states are transient. State 5 forms the only

irreducible closed class C = {5}. The stationary distribution on this closed class is obviously y5 = 1.

Thus, the stationary distribution for the Markov chain is π = (0, 0, 0, 0, 0, 1).

In Example 10.2, the states 5,6 form the only irreducible closed class C = {5, 6}, and the other states

are transient. The corresponding

PC =

(
.5 .5

1 0

)
.

Let y = (y5, y6). Solving

y = yPC subject to y5 + y6 = 1
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gives y = (2/3, 1/3). Hence the stationary distribution for the Markov chain is (0, 0, 0, 0, 2, 1)/3.

and each row of P n tends to (0, 0, 0, 0, 2, 1)/3.

Example 10.6 is irreducible but with period 2. In the case when n = 5, it can be shown that the

stationary distribution is the Binomial distribution B(5, 1
2) = (1, 5, 10, 10, 5, 1)/32.

Equation π = πP for the stationary distribution can be written

πj =
∑
i∈S

πipij. (10.4)

But, obviously,

πj = πj
∑
i∈S

pji =
∑
i∈S

πjpji.

So ∑
i∈S

πjpji =
∑
i∈S

πipij. (10.5)

We can interpret
∑

i∈S πjpji as the probability flux out of state j, and
∑

i∈S πipij as the probability

flux into state j. In this interpretation, it is natural to think of (10.5) as an equation of full balance.

We observe that (10.5) holds if

πjpji = πipij. (10.6)

This is called the law of detailed balance, stating that the probability flux from i to j in equilibrium

is the same as that from j to i.
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10.5 Long term behaviour

Many physical systems tend to settle down to an equilibrium state regardless of its initial state. Let

{Xn}n≥0 be Markov (λ, P ). Under suitable conditions

P n →


π

π
...

pi

 . (10.7)

We say that the chain has a limiting distribution. What this means is that if the chain is left

running for a long time, it reaches an equilibrium situation regardless of its initial distribution. In

this equilibrium situation the state occupancy probabilities are equal to the stationary distribution.

Note namely that

(P(Xn = i))i∈S = λP n → λ


π

π
...

π

 = π

regardless of λ. As the next example shows, there may be a stationary distribution without the chain

having a limiting distribution.
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Example 10.7. Let

P =

0 1 0

0 0 1

1 0 0

 .

Then π = (1, 1, 1)/3, but P n does not converge. Rather, it cycles through three different matrices.

Notice that the period of this chain is 3.

Here is the main result of this section.

Theorem 10.7. Let {Xn}n≥0 be irreducible Markov (λ, P ) and suppose that it has a stationary

distribution π. If the chain is aperiodic, then each row of P n tends to π. If the chain is periodic,

then P n does not tend to a limit but π still represents the proportion of time that is spent in

the various states in the long run.

The proof can be found in e.g. [3]. Let us discuss some examples.

In Example 10.1, we have

lim
n→∞

P n =

(
2/3 1/3

2/3 1/3

)
In the long run it rains on 2/3 of the days.

In Example 10.4, each row of P n tends to (5, 19, 40, 50, 40, 16)/170. So the states −2,−1, which

correspond to having unfilled orders, occur in the long run in 24/170 of the weeks.

In Example 10.5, each row of P n tends to (0, 0, 0, 0, 0, 1).

In Example 10.2, and each row of P n tends to (0, 0, 0, 0, 2, 1)/3.
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In Example 3, there are two absorbing states. We are not yet in a position to give the limit of P n.

However we can say that the three central columns of P n all tend to 0 because the corresponding states

are all transient. We shall find the probabilities of absorption at 2 starting from the intermediate

states later.

Example 6 is irreducible but with period 2. The case of n = 5 will be illustrated. It can be shown

that the stationary distribution is the Binomial distribution B(5, 1
2) = (1, 5, 10, 10, 5, 1)/32. Recall

that this indicates the proportion of time that is spent in the various states. Suppose first that the

process starts in state 0. The after an even number of steps it must be in an even-numbered state,

while after an odd number of steps it cannot be in an even-numbered state. So the probability is

twice the probability in the equilibrium distribution, but for the even-numbered states only. This

gives

16P 2n →



0 1 2 3 4 5

0 1 0 10 0 5 0

1 0 5 0 10 0 1

2 1 0 10 0 5 0

3 0 5 0 10 0 1

4 1 0 10 0 5 0

5 0 5 0 10 0 1


.

The limit of the odd powers of P is similar except that the two kinds of row are interchanged.
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Note that we can reorder the rows and columns to get the following forms:

16P 2n →



0 2 4 1 3 5

0 1 10 5 0 0 0

2 1 10 5 0 0 0

4 1 10 5 0 0 0

1 0 0 0 5 10 1

3 0 0 0 5 10 1

5 0 0 0 5 10 1


16P 2n+1 →



0 2 4 1 3 5

0 0 0 0 5 10 1

2 0 0 0 5 10 1

4 0 0 0 5 10 1

1 1 10 5 0 0 0

3 1 10 5 0 0 0

5 1 10 5 0 0 0


.
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10.6 Ergodic theorems

Ergodic theorems concern the limiting behaviour of averages over time. Denote by Vi(n) the number

of visits to i before n:

Vi(n) =

n−1∑
k=0

1{Xk=i}.

Then Vi(n)/n is the proportion of time before n spent in state i. The following ergodic theorem gives

the long-run proportion of time spent by a Markov chain in each state.

Theorem 10.8. If {Xn}n≥0 is irreducible Markov (λ, P ), then

P
(Vi(n)

n
→ 1

µi
as n→∞

)
= 1,

where µi = Ei(Ti) is the expected return time to state i. Moreover, in the positive recurrent

case, for any bounded function f : S → R we have

P
(1

n

n−1∑
k=0

f (Xk)→ f̄ as n→∞
)

= 1,

where

f̄ =
∑
i∈S

πif (i)

and where (πi)i∈S is the unique stationary distribution.
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Proof If the chain is transient, then for any state i, µi =∞ while the total number Vi of visits to

i is finite with probability 1, so

0 ≤ Vi(n)

n
≤ Vi
n
→ 0 =

1

µi
.

Suppose that the chain is recurrent and fix any state i. Without loss of generality we may assume

that λ = δi; otherwise consider {XTi+n}n≥0 which is Markov (δi, P ) by the strong Markov property.

Recall τ
(r)
i , the length of the rth excursion to i, as defined before. By Lemma 10.1, the non-negative

random variables τ
(1)
i , τ

(2)
i , . . . are i.i.d. with Ei(τ

(r)
i ) = µi. It is easy to see that

τ
(1)
i + · · · + τ

(Vi(n)−1)
i ≤ n− 1,

the left-hand side being the time of the last visit to i before n, while

τ
(1)
i + · · · + τ

(Vi(n))
i ≥ n,

the left-hand side being the time of the first visit to i after n− 1. Hence

τ
(1)
i + · · · + τ

(Vi(n)−1)
i

Vi(n)
≤ n

Vi(n)
≤ τ

(1)
i + · · · + τ

(Vi(n))
i

Vi(n)
. (10.8)

By the strong law of large numbers

P
(τ (1)

i + · · · + τ
(n)
i

n
→ µi as n→∞

)
= 1

and, since the chain is recurrent,

P(Vi(n)→∞ as n→∞) = 1.
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So letting n→∞ in (10.8), we get

P
( n

Vi(n)
→ µi as n→∞

)
= 1,

which implies

P
(Vi(n)

n
→ 1

µi
as n→∞

)
= 1.

In the positive recurrent case, the chain has the unique stationary distribution (πi)i∈S. Assume
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without loss of generality that |f | ≤ 1. For any J ⊂ S, we have∣∣∣1
n

n−1∑
k=0

f (Xk)− f̄
∣∣∣ =

∣∣∣∑
i∈S

(Vi(n)

n
− πi

)
f (i)

∣∣∣
≤
∑
i∈J

∣∣∣Vi(n)

n
− πi

∣∣∣ +
∑
i 6∈J

∣∣∣Vi(n)

n
− πi

∣∣∣
≤
∑
i∈J

∣∣∣Vi(n)

n
− πi

∣∣∣ +
∑
i 6∈J

(Vi(n)

n
+ πi

)
=
∑
i∈J

∣∣∣Vi(n)

n
− πi

∣∣∣ + 1−
∑
i∈J

Vi(n)

n
+
∑
i 6∈J

πi

=
∑
i∈J

∣∣∣Vi(n)

n
− πi

∣∣∣ +
∑
i∈J

(
π − Vi(n)

n

)
+ 2
∑
i 6∈J

πi

≤ 2
∑
i∈J

∣∣∣Vi(n)

n
− πi

∣∣∣ + 2
∑
i 6∈J

πi.

We proved above that

P
(Vi(n)

n
→ 1

µi
as n→∞ for all i

)
= 1.

Given ε > 0, choose J finite so that ∑
i6∈J

πi <
ε

4
.



SMST C: Probability 10–31

and then choose N = N(ω) so that, for n ≥ N ,∑
i∈J

∣∣∣Vi(n)

n
− πi

∣∣∣ < ε

4
.

Then, for n ≥ N , we have ∣∣∣1
n

n−1∑
k=0

f (Xk)− f̄
∣∣∣ < ε

as desired. �
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10.7 Exercises

10–1. Let {Xn}n≥0 be a Markov chain on S = {1, 2, 3} with transition matrix

P =

1/3 1/3 1/3

0 2/3 1/3

1/3 2/3 0

 .

Compute P(Xn = 1|X0 = 1) for n = 0, 1, 2, 3, 4, 5, 6.

10–2. In Exercise 10-1, if the initial distribution is

P(X0 = 1) = P(X0 = 2) = P(X0 = 3) = 1/3,

Waht is P(Z3 = 2 or 3)?

10–3. Prove that the Markov property (10.1) is equivalient to (10.2).

10–4. Let {Xn}n≥0 be a Markov chain on S = {1, 2, 3, 4, 5} with transition matrix

P =


0.5 0 0 0 0.5

0 0.5 0 0.5 0

0 0 1 0 0

0 0.2 0.3 0.2 0.3

0.5 0 0 0 0.5

 .

Identify all closed classes. Which are irreducible? Which states are recurrent and which are

transient?
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10–5. Find the stationary distribution of the Markov chain in Exercise 10-1 and describe the limiting

behaviour of the n-step transition probabilities p
(n)
ij as n→∞.

10–6. Find the period of an irreducible Markov chain who has the transition matrix

(a)

0 1 0

0 0 1

1 0 0

 (b)


0 0.5 0.5 0

0.5 0 0 0.5

0.5 0 0 0.5

0 0.5 0.5 0

 (c)


0 1 0 0 0

0.5 0 0.5 0 0

0 0.5 0 0.5 0

0 0 0.5 0 0.5

0 0 0 1 0


10–7. Let S be finite. Suppose that for some i ∈ S

lim
n→∞

p
(n)
ij = πj for all j ∈ S.

Show that π = (πj)j∈S is a stationary distribution.

10–8. For disctinct states i and j, show that i reaches j if and only if there are some states i0, i1, . . . , in
with i0 = i and in = j such that pi0i1pi1i2 · · · pin−1in > 0.
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