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12.1 Markov property and the Kolmogorov equations

Let S be a countable space. A continuous-time stochastic process {X(t)}t≥0 with values in S is

a family of random variables X(t) : Ω → S. As in the study of discrete-time Markov chain, we are

going to consider ways in which we might specify the probabilistic behaviour (or law) of {X(t)}t≥0.

These should enable us to find, at least in principle, any probability connected with the process e.g.

P(X(t1) = i1, . . . , X(tn) = in). There are subtleties in this problem not present in the discrete-time

case. They arise because, for a countable disjoint union

P(
∏
n

An) =
∑
n

P(An),

whereas for an uncountable union ∪t≥0At there is no such rule. To avoid these subtleties as far

as possible we shall restrict our attention to processes X(t) : Ω → S which are right-continuous,

namely

lim
s↓t
X(t, ω) = X(t, ω) for all t ≥ 0, ω ∈ Ω.

In this chapter we are concerned with Markovian stochastic processes with continuous time and

countable state space S. We define the Markov property of a process {X(t)}t≥0 by

P(X(t) = j | X(t1) = i1, . . . , X(tn) = in, X(s) = i) = P(X(t) = j | X(s) = i) (12.1)

for any 0 ≤ t1 ≤ . . . ≤ tn ≤ s ≤ t and i1, . . . , in, i, j ∈ S. Denote

pij(s, t) := P(X(t) = j | X(s) = i).
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If pij(s, t) = pij(t − s) the process has stationary transition probabilities. Unless otherwise stated

this property will be assumed henceforth. There is a possibility that a process may reach infinity in

finite time. We will assume that if this happens the process stays at infinity for ever (infinity is then

called a coffin state). This is called the minimal construction. The following proposition gives some

basic properties of the transition probabilities.

Proposition 12.1.

0 ≤ pij(t) ≤ 1. (12.2)∑
j∈S

pij(t) ≤ 1. (12.3)

pij(s + t) =
∑
k∈S

pik(s)pkj(t). (12.4)

pij(0) = 1 (i = j). (12.5)

Proof The first and forth statements are trivial, while the second follows from∑
j∈S

pij(t) = P(X(t) ∈ S | X(0) = i).

If the inequality is strict, the process is dishonest. To show the third equation, the Chapman–
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Kolmogorov equation, we compute

pij(s + t) = P(X(s + t) = j | X(0) = i)

=
∑
k∈S

P(X(s) = k | X(0) = i)P(X(s + t) = j | X(s) = k)

=
∑
k∈S

pik(s)pkj(t),

noticing that the coffin state is ruled out by our construction. �

As in the case of discrete time it is convenient to express things in matrix notation. Let P (t) =

(pij(t))i,j∈S. Then (12.4) can be written

P (s + t) = P (s)P (t). (12.6)

Hence {P (t)}t≥0 is a semigroup. It is stochastic if there is equality in (12.3), and sub-stochastic

otherwise.

To proceed we need to assume some regularity. We call the process (or the semigroup) standard if

the transition probabilities are continuous at 0, i.e. if

lim
t↓0
pij(t) = pij(0). (12.7)

Lemma 12.1. Let {P (t)}t≥0 be a standard semigroup. Then pij(t) is a continuous function of

t for all i, j.

Proof We shall show that for any i, j,

|pij(t + h)− pij(t)| ≤ 1− pii(h), h > 0.
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From (12.4) we have that

pij(t + h) =
∑
k∈S

pik(h)pkj(t)

so

pij(t + h)− pij(t) = (Pii(h)− 1)pij(t) +
∑
k 6=i

pik(h)pkj(t).

Noting pkj(t) ≤ 1, we have ∑
k 6=i

pik(h)pkj(t) ≤
∑
k 6=i

pik(h) = 1− pii(h).

Hence

|pij(t + h)− pij(t)| ≤ (1− pii(h))(1− pij(t)),
whence the claim follows. �

The following proposition describes the differentiability of the transition probabilities.

Proposition 12.2. For a standard stochastic semigroup {P (t)}t≥0 we have

(i) ṗii(0) := dpii(0)/dt exists and is non-positive (but not necessarily finite);

(ii) ṗij(0) := dpij(0)/dt exists and is finite for i 6= j.

We omit the proof but refer the reader to [2]. Let Q = (qij) = (ṗij(0)), which is called the generator

of {P (t)}t≥0 or the Markov chain. The following result is left as Exercise 12-1.

Lemma 12.2. If S is finite then
∑

j∈S qij = 0, while if S is countably infinite we have∑
j∈S qij ≤ 0.
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12.1.1 Finite state space

When the state space is finite, using Proposition 12.2 and Lemma 12.2 we have −qii =
∑

j 6=i qij. We

will find that it is convenient to set qi = −qii. For any t write the Taylor expansions

pij(h) = pij(t, t + h) = qijh + o(h)

and

pii(h) = pii(t, t + h) = 1− qih + o(h).

We hence call qij the intensity of the transition i → j. The following theorem is the key result in

the theory of continuous time Markov chains.

Theorem 12.1. If the state space is finite, then the transition probabilities obey the Kolmogorov

forward equation
dP (t)

dt
= P (t)Q (12.8)

and the Kolmogorov backward equation

dP (t)

dt
= QP (t). (12.9)

Proof By (12.4),

pij(t + h) =
∑
k∈S

pik(t)pkj(h) = pij(t)pjj(h) +
∑
k 6=j

pik(t)pkj(h),
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so
pij(t + h)− pij(t)

h
= −pij(t)

1− pjj(h)

h
+
∑
k 6=j

pik(t)
pkj(h)

h
.

Letting h→ 0 yields

dpij(t)

dt
= −pij(t)qj +

∑
k 6=j

pik(t)qkj =
∑
k∈S

pik(t)qkj.

This proves the forward equation (12.8). To get the backward equation (12.9) we proceed in a similar

fashion, but now writing

pij(t + h) =
∑
k∈S

pik(h)pkj(t).

�

12.1.2 Infinite state space

Theorem 12.1 is also true for a large class of Markov chains with infinite state space. The necessary

assumptions have to do with assuring smoothness of the transition probabilities pij(t). The semigroup

{P (t)}t≥0 is said to be uniform if

lim
t↓0
pii(t) = 1 uniformly in i ∈ S.

The following lemma gives an easy criterion for uniformity (for a proof please see e.g. [2]).



SMST C: Probability 12–8

Lemma 12.3. (i) {P (t)}t≥0 is uniform if

sup
i∈S

qi <∞.

(ii) {P (t)}t≥0 is uniform if and only if∑
j∈S

qij = 0 i ∈ S.

Theorem 12.2. If {P (t)}t≥0 is uniform then it obeys the Kolmogorov forward equation (12.8)

as well as the backward equation (12.9).

From now on we only consider the Markov chain whose generator Q obeys supi∈S qi < ∞.

Hence the transition probability matrix {P (t)}t≥0 is uniform.

By Proposition 12.2 and Lemma 12.3, we recall that the generator Q = (qij)i,j∈S of the Markov chain

has the following properties:

• 0 ≤ −qii <∞ for all i;

• qij ≥ 0 for all i 6= j;

•
∑

j∈S qij = 0 for all i.

Such a matrix is also known as a Q-matrix. In addition to the Q-matrix, we let the initial distribution

be λ = (λj)j∈S, thought as a row-vector. From now on we will say that {X(t)}t≥0 is Markov (λ,Q).

To close this section, let us state the strong Markov property without proof (the proof can be found

in e.g. [4]). As defined in the discrete-case, a random variable T with values in [0,∞] is called a

stopping time of {X(t)}t≥0 if for each t ∈ [0,∞] the event {T ≤ t} depends only on {X(s) : s ≤ t}.
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Theorem 12.3. Let {X(t)}t≥0 be Markov (λ,Q) and let T be a stopping time. Then, conditional

on T <∞ and XT = i, {X(T + t)}t≥0 is Markov (δi, Q) and independent of {X(s) : s ≤ t}.
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12.2 Jump chains

As the state space S is countable, the right-continuity of the Markov chain {X(t)}t≥0 means that for

all ω ∈ Ω and t ≥ 0 there exists ε > 0 such that

X(s, ω) = X(t, ω) for t ≤ s ≤ t + ε.

Thus, every path of the process must remain constant for a while in each new state. We may have

three possibilities for the sorts of path: (i) the path makes finitely many jumps and then becomes

stuck in some state forever; (ii) the path makes infinitely many jumps but only finitely many in any

interval [0, t]; (iii) the path makes infinitely many jumps in a finite interval [0, ζ). In case (iii), ζ is

called the explosion time and we set X(t) =∞ for t ≥ ζ as assumed before. Define

J0 = 0, Jn+1 = inf{t ≥ Jn : X(t) 6= X(Jn)}

for n = 0, 1, . . ., and

Sn =

{
Jn − Jn−1 if Jn−1 <∞,
∞ otherwise

for n = 1, 2, . . .. We call J0, J1, . . . the jump times and S1, S2, . . . the holding times. Note that the

right-continuity forces Sn > 0 for all n. If Jn+1 =∞ for some n, we define X(∞) = X(Jn), the final

value, otherwise X(∞) is undefined. The (first) explosion time ζ is defined by

ζ = sup
n
Jn =

∞∑
n=1

Sn.
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The discrete-time process {Yn}n≥0 given by Yn = X(Jn) is called the jump chain. This is simply the

sequence of values taken by X(t) up to explosion.

Associated to the matrix Q we define a jump matrix Π = (πij)i,j∈S by

πij =

{
qij/qi if j 6= i and qi 6= 0 ,

0 if j 6= i and qi = 0;

πii =

{
0 if qi 6= 0 ,

1 if qi = 0 .

Note that Π is a stochastic matrix.

In the previous section, the Markov chain {X(t)}t≥0 is described in terms of the semigroup {P (t)}t≥0.

Another equivalent way to describe how the process evolves is in terms of the jump chain and holding

times as described in the following theorem.

Theorem 12.4. Let {X(t)}t≥0 be a right-continuous Markov chain with generator Q. Let Q be

a Q-matrix with jump matrix Π and semigroup {P (t)}t≥0. Then the following statements are

equivalent:

(i) Conditional on X(0) = i, the jump chain {Yn}n≥0 is discrete-time Markov (δi,Π)and for

each n ≥ 1, conditional on Y0 = i0, . . . , Yn−1 = in−1, the holding times S1, . . . , Sn are

independent exponential random variables of parameters qi0, . . . , qin−1 respectively.

(ii) For all n = 0, 1, 2, . . ., all times 0 ≤ t0 ≤ . . . ≤ tn ≤ tn+1 and all states i0, i1, . . . , in+1,

P(X(tn+1) = in+1 | X(t0) = i0, . . . , X(tn) = in) = pinin+1(tn+1 − tn).



SMST C: Probability 12–12

Again we refer the reader to [4] for the proof. This theorem shows that the process evolves in following

way: given that the chain {X(t)}t≥0 starts at i0 at time t = 0, it waits there for an exponential time

S1 of parameter qi0 and then jumps to a new state, choosing state i1 with probability πi0,i1. It then

waits for an exponential time S2 of parameter qi1 and then jumps to a new state, choosing state i2
with probability πi1,i2. It further evolves in the same fashion.
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12.3 Classification of states

As in the study of the discrete-time Markov chains, it is useful to identify the class structure of a

continuous Markov chain. It is observed from the previous section that the continuous Markov chain

can be described in terms of the jump chain. This indicates clearly that the class structure of the

continuous Markov chain is simply the discrete-time class structure of the corresponding jump chain.

That is, the notions of closed class, irreducible closed class, absorbing state are inherited from the

jump chain. Similarly, we say that i reaches j if

Pi(X(t) = j for some t ≥ 0 ) > 0.

where, as before, we write Pi(A) for the conditional probability P(A|X(0) = i). We say that i and

j communicate if they reach each other.

Theorem 12.5. For distinct states i and j the following statements are equivalent:

(i) i reaches j;

(ii) i reaches j for the jump chain;

(iii) qi0i1qi1i2 · · · qin−1in > 0 for some states i0, i1, . . . , in with i0 = i and in = j;

(iv) pij(t) > 0 for all t > 0;

(v) pij(t) > 0 for some t > 0.

Proof Implications (iv)⇒ (v)⇒ (i)⇒ (ii) are clear. If (ii) holds, then by Exercise 10 8, there are

some states i0, i1, . . . , in with i0 = i and in = j such that πi0i1πi1i2 · · · πin−1in > 0, which implies (iii).
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We now note that if quv > 0, then

puv(t) ≥ Pu(J1 ≤ t, Y1 = v, S2 > t) = (1− equt)πuve−qvt > 0

for all t > 0. Thus, if (iii) holds, then

pij(t) ≥ pi0i1(t/n)pi1i2(t/n) · · · pin−1in(t/n) > 0

for all t > 0, and (iv) holds. �

We observe that condition of Theorem 12.5 shows that the situation in continuous-time is simpler

than in discrete-time, where it may be possible to reach a state, but only after a certain length of

time, and then only periodically.

Just as in the discrete-time theory, we say that a state i is recurrent if

Pi({t ≥ 0 : X(t) = i} is unbounded) = 1,

while we say i is transient if

Pi({t ≥ 0 : X(t) = i} is unbounded) = 0.

The following theorem shows that recurrence and transience are determined by the jump chain again.

Theorem 12.6. We have:

(i) If i is recurrent for the jump chain {Yn}n≥0, then i is recurrent for {X(t)}t≥0.

(ii) If i is transient for the jump chain {Yn}n≥0, then i is transient for {X(t)}t≥0.

(iii) Every state is either recurrent or transient.
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(iv) Let C be an irreducible closed class. Then either all states in C are transient or all are

recurrent.

Proof (i) Suppose i is recurrent for {Yn}n≥0. If X(0) = i, then Jn → ∞ and X(Jn) = Yn = i

infinitely often with probability 1. We must therefore have

Pi({t ≥ 0 : X(t) = i} is unbounded) = 1.

(ii) Suppose i is transient for {Yn}n≥0. If X(0) = i, then

N = sup{n ≥ 0 : Yn = i} <∞,

so {t ≥ 0 : X(t) = i} is bounded by Jn+1, which is finite with probability 1, because {Yn : n ≤ N}
cannot include an absorbing state.

(iii) Apply Theorem 10.3 to the jump chain.

(iv) Apply Theorem 10.4 to the jump chain. �

The next result gives the conditions for recurrence and transience. We denote by Ti the first passage

time of {X(t)}t≥0 to state i, defined by

Ti = inf{t ≥ J1 : X(t) = i}.

Theorem 12.7. We have:

(i) If qi = 0 or Pi(Ti <∞) = 1, then i is recurrent and
∫∞

0 pii(t)dt =∞.

(ii) If qi > 0 and Pi(Ti <∞) < 1, then i is transient and
∫∞

0 pii(t)dt <∞.
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Proof If qi = 0 then {X(t)}t≥0 cannot leave i, so i is recurrent and pii(t) = 1 for all t which yields∫∞
0 pii(t)dt = ∞. Suppose then qi > 0. Let Ni denote the first passage time of {Yn}n≥0 to state i.

Then

Pi(Ti <∞) = Pi(Ni <∞).

By Theorem 12.6 and the corresponding result of the discrete-time Markov chains, we see that i is

recurrent (resp. transient) if and only if Pi(Ti <∞) = 1 (resp. Pi(Ti <∞) < 1).

Write π
(n)
ij for the (i, j) entry in Πn. Compute∫ ∞

0

pii(t)dt =

∫ ∞
0

Ei(1{X(t)=i})dt = Ei

∫ ∞
0

1{X(t)=i}dt

= Ei

∞∑
n=0

Sn+11{Yn=i} =

∞∑
n=0

Ei(Sn+1|Yn = i)Pi(Yn = i)

=
1

qi

∞∑
0

π
(n)
ii .

The assertions now follow from Theorems 12.6 and 10.3. �

The following result shows that the recurrence and transience are determined by any discrete-time

sampling of {X(t)}t≥0.

Theorem 12.8. Let ∆ > 0 be any given step-size and set Zn = X(n∆).

(i) If i is recurrent for {X(t)}t≥0, then it is recurrent for {Zn}n≥0.

(ii) If i is transient for {X(t)}t≥0, then it is transient for {Zn}n≥0.
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Proof Assertion (i) is obvious. To show (ii), we estimate, for n∆ ≤ t < (n + 1)∆,

pii((n + 1)∆) ≥ pii(t)P(X(t + s) = i for s ∈ [0,∆] | X(t) = i)

= pii(t)Pi(X(s) = i for s ∈ [0,∆])

= pii(t)Pi(S1 > ∆)

= pii(t)e
−qi∆.

Then ∫ ∞
0

pii(t)dt =

∞∑
n=0

∫ (n+1)∆

n∆

pii(t)dt ≤ eqi∆
∞∑
n=0

pii((n + 1)∆)

and the result follows from Theorems 12.7 and 10.3. �
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12.4 Stationary distribution

In this section and next one, we let {X(t)}t≥0 be a Markov chain with the state space S and the

generator Q as well as the semigroup {P (t)}t≥0. We always assume that Q is a Q-matrix.

Definition 12.1. A stationary distribution of the Markov chain is a probability distribution λ =

(λi)i∈S on S, thought of as a row-vector, such that λQ = 0. It can also be called an invariant

distribution.

To see why λ is also called an invariant distribution, we observe that if the state space is finite, the

the backward equation shows
d

dt
λP (t) = λ

d

dt
P (t) = λQP (t),

so λQ = 0 implies λP (t) = λP (0) for all t. It is more difficult to show this if the state space is

infinite as the interchange of differentiation with the summation involved in multiplication by λ is

not justified. In this case, an entirely different proof is needed but not presented here.

Theorem 12.9. Let Q be a Q-matrix with the jump matrix Π and let λ be a probability distri-

bution on S. The following statements are equivalent:

(i) λ is stationary;

(ii) µΠ = µ, where µ = (µi)i∈S with µi = λiqi.

Proof We have qi(πij − δij) = qij for all i, j ∈ S, so

(µ(Π− I))j =
∑
i∈S

µi(πij − δij) =
∑
i∈S

πiqij = (λQ)j.
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�

Recall that a state i is recurrent if qi = 0 or Pi(Ti <∞) = 1. If qi = 0 and the expected return time

mi = Ei(Ti) < ∞, we then say i is positive recurrent. Otherwise a recurrent state i is called null

recurrent. It can be showed that i is positive recurrent if and only if it is positive recurrent for the

jump chain.

Theorem 12.10. If the Markov chain {X(t)}t≥0 is irreducible and positive recurrent, then it

has a unique stationary distribution.

Proof We assume the state space S consists at least two states; otherwise the theorem is trivial.

Then the irreducibility forces qi > 0 for all i. By Theorems 12.5 and 12.6, the jump chain {Yn}n≥0

is irreducible and positive recurrent. By Theorem 10.6, the jump chain has a unique stationary

distribution µ = (µi)i∈S which obeys µΠ = µ. By Theorem 12.9, we can take λi = µi/qi to obtain

the stationary distribution for the Markov chain. The uniqueness follows from the unique stationary

distribution for the jump chain and Theorem 12.9. �

We are now concerned with the limiting behavior of pij(t) at t → ∞ and its relation to stationary

distribution. The situation is analogous to the case of discrete-time and is in fact simpler as there is

no longer any possibility of periodicity. Let us prepare a lemma.

Lemma 12.4. Let Q be a Q-matrix with semigroup {P (t)}t≥0. Then for all t, h ≥ 0,

|pij(t + h)− pij(t)| = 1− e−qih.

Proof By Lemma 12.1

|pij(t + h)− pij(t)| ≤ 1− pii(h) ≤ Pi(J1 ≤ h) ≤ 1− e−qih.
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�

Theorem 12.11. Assume that the Markov chain {X(t)}t≥0 is irreducible and positive recurrent,

and its unique stationary distribution is λ = (λj)j∈S. Then for all states i, j we have

lim
t→∞

pij(t) = λj

Proof Let {X(t)}t≥0 be Markov (δi, Q). Fix h > 0 and consider the h-skeleton Zn = X(nh). By

the Markov property

P(Zn+1 = in+1|Z0 = i0, . . . , Zn = in) = pinin+1(h)

so {Zn}n≥0 is discrete-time Markov (δi, P (h)). By Theorem 12.3, the irreducibility implies pij(h) > 0

for all i, j so {Zn}n≥0 is irreducible and aperiodic. By Exercise 12-3, λ is a stationary distribution

for {Zn}n≥0. So, by Theorem 10.7,

lim
n→∞

pij(nh) = λj.

Now, fix state i. For any ε > 0 we can find h > 0 so that

1− e−qis ≤ ε/2 for 0 ≤ s ≤ h,

and then find N such that

|pij(nh)− λi| ≤ ε/2 for n ≥ N.

Hence for t ≥ Nh, we have nh ≤ t < (n + 1)h for some n ≥ N and

|pij(t)− λi| ≤ |pij(t)− pij(nh)| + |pij(nh)− λi| ≤ ε
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by Lemma 12.4. This completes the proof. �

To close this section, let us introduce the concept of detailed balance for the continuous-time chains.

A Q-matrix Q and a probability distribution λ are said to be in detailed balance if

λiqij = λjqji for all i, j.

It is easy to see that if Q and λ are in detailed balance, then λ is a stationary distribution. We leave

the proof as an exercise.
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12.5 Ergodic theorem

The following ergodic theorem gives the long-run proportion of time spent by a continuous-time chain

in each state as in the discrete-time case.

Theorem 12.12. Let {X(t)}t≥0 be Markov (ρ,Q), where ρ is any probability distribution on

S. If it is irreducible, then

lim
t→∞

1

t

∫ t

0

1{X(s)=i}ds =
1

miqi
a.s. (12.10)

where mi = Ei(Ti) is the expected return time to state i. Moreover, if the chain is positive

recurrent, then for any bounded function f : S → R, we have

lim
t→∞

1

t

∫ t

0

f (X(s))ds = f̄ :=
∑
i∈S

λif (i) a.s (12.11)

where (λi)i∈S is the unique stationary distribution, namely λi = 1/(miqi).

Proof If the chain is transient then the total time spent in any state i is finte, so

0 ≤ 1

t

∫ t

0

1{X(s)=i}ds ≤
1

t

∫ ∞
0

1{X(s)=i}ds→ 0 =
1

miqi

as mi = ∞. Suppose then that the chain is recurrent. Fix any state i. Then X(t) hits i with

probability 1 and the long-run proportion of time in i equals the long-run proportion of time in i after

first hitting i. So, by the stonge Markov property (of the jump chain), it is sufficient to consider the
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case when ρ = δi. Set T 0
i = 0 and define, for n = 0, 1, 2, . . .,

Mn+1
i = inf{t > T ni : X(t) 6= i} − T ni ,

T n+1
i = inf{t > T ni + Mn+1

i : X(t) = i},
Ln+1
i = T n+1

i − T ni .

By the strong Markov property (of the jump chain) at the stopping times T ni for n ≥ 0 we see

that L1
i , L

2
i , . . . are independent and identically distributed with mean mi, and that M 1

i ,M
2
i , . . . are

independent and identically distributed with mean 1/qi. Hence, by the strong law of large numbers,

lim
n→∞

L1
i + · · · + Lni

n
= mi a.s.

and

lim
n→∞

M 1
i + · · · + Mn

i

n
=

1

qi
a.s.

Hence

lim
n→∞

M 1
i + · · · + Mn

i

L1
i + · · · + Lni

=
1

miqi
a.s.

Moreover, we note that T ni = L1
i + · · · + Lni and T ni /T

n+1
i → 1 as n→∞ with probability 1. Now,

for T ni ≤ t < T n+1
i , we have

T ni
T n+1
i

M 1
i + · · · + Mn

i

L1
i + · · · + Lni

≤ 1

t

∫ t

0

1{X(s)=i}ds ≤
T n+1
i

T ni

M 1
i + · · · + Mn+1

i

L1
i + · · · + Ln+1

i

.
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Letting t→∞ we obtain the assertion (12.10). In the positive recurrent case, by writting

1

t

∫ t

0

f (X(s))ds− f̄ =
∑
i∈S

(1

t

∫ t

0

1{X(s)=1}ds− λi
)
f (i) (12.12)

we can show another assertion (12.11) in the same way as Theorem 10.8 was proved. We leave the

details as an exercise. �



SMST C: Probability 12–25

12.6 Applications

Example 12.1. (General birth process) A general birth process is a Markov chain on the state

space S = {0, 1, 2, . . .} with the generator

Q =

−q0 q0 0 0 · · ·
0 −q1 q1 0 · · ·
· · · · · · · · · · · · · · ·

 .

If supi≥0 qi < ∞, then the semigroup {P (t)}t≥0 is uniform. If
∑

i≥0 q
−1
i < ∞, then qi → ∞ so

supi≥0 qi =∞ and {P (t)}t≥0 is not uniform.

Let us now consider a birth process which has constant intensity of births, namely qi = q for all i ∈ S.

Clearly, {P (t)}t≥0 is uniform (provided that q <∞). The forward equation yields

dpjk(t)

dt
= −qpjk(t) + qpj,k−1(t).

In particular, if j = 0, we have

dp0k(t)

dt
= −qp0k(t) + qp0,k−1(t). (12.13)

The initial conditions are assumed to be p00(0) = 1 and p0i(0) = 0 for i ≥ 1, so that the process

starts in state 0. In order to solve this differential equation, we will attempt to convert it into a partial

differential equation for the probability generating function

G(s; t) = EsX(t) =
∑
i≥0

p0i(t)s
i.
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Multiplying both sides of (12.13) by sk and summing over k we get

∂G(s; t)

∂t
= −qG(s; t) + qsG(s, t).

For a fixed value of s we see that

∂G(s; t)

∂t
= −q(1− s)G(s; t)

so that

G(s; t) = A(s)e−q(1−s)t.

From the initial condition G(s; 0) = 1, we must have A(s) = 1, so X(t) follows a Poisson distribution

with mean qt. In general

pij(t) = pij(s, s + t) = e−qt
(qt)j−i

(j − i)!
, j ≥ i.

We observe that the process we just derived is the Poisson process discussed in the previous Chapter.

Example 12.2. (Birth and death process) A birth and death process is a Markov chain on

the state space S = {0, 1, 2, . . .} with the generator

Q =

−b0 b0 0 0 · · ·
d1 −(b1 + d1) b1 0 · · ·
· · · · · · · · · · · · · · ·

 .
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This process was introduced by McKendrick in 1925, used by Feller in 1939 to describe biological

population growth, and studied in detail by Kendall later. When it is used to describe biological pop-

ulation, the stationary distribution is particularly interested. To determine the stationary distribution

λ = (λj)j∈S, the equation λQ = 0 yields

−b0λ0 + d1λ1 = 0,

bj−1λj−1 − (bj + dj)λj + dj+1λj+1 = 0, j ≥ 1,

with solution

λj =
bj−1

dj
λj−1 =

bj−1 · · · b0

dj · · · d1
λ0, j ≥ 1.

But
∑

j≥0 λj = 1, whence (
1 +

∞∑
j=1

bj−1 · · · b0

dj · · · d1

)
λ0 = 1.

Naturally we require
∞∑
j=1

bj−1 · · · b0

dj · · · d1
<∞

to give

λ0 =
(

1 +

∞∑
j=1

bj−1 · · · b0

dj · · · d1

)−1
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and

λj =
bj−1 · · · b0

dj · · · d1

(
1 +

∞∑
j=1

bj−1 · · · b0

dj · · · d1

)−1

, j ≥ 1.

As a special case, let bj = b and dj = d and assume r := b/d < 1. Then

λ0 = 1− r and λj = (1− r)rj, j ≥ 1,

which is a geometric distribution.
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12.7 Exercises

12–1. Prove Lemma 12.2.

12–2. Show that the general birth process defined in Example 12.1 is dishonest if
∑

i≥1 q
−1
i <∞.

12–3. Assume that the Markov chain {X(t)}t≥0 is irreducible and positive recurrent, and its unique

stationary distribution is λ = (λ)j∈S. Show

λP (t) = λ ∀t ≥ 0.

12–4. If aQ-matrixQ and a probability distribution λ are in detailed balance, show that λ is a stationary

distribution.

12–5. Show assertion (12.11) from (12.12).
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