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2. Markov Chains

We now consider processes that move around on a (usually finite) state space S in discrete
time. This means that at each time point an object moves from one position in the state
space to another (or it may stay at the same position). Denote the position at time t by Zt

for t = 0, 1, . . . and Zt ∈ S.

Definition. The stochastic process Zt for t = 0, 1, . . . is called a Markov chain if the
following Markov property holds

P(Zt+1 = j | Zt = i, Zt−1 = it−1, . . . , Z0 = i0) = P(Zt+1 = j | Zt = i)

for any t = 0, 1, . . . and j, i0, . . . , it−1, i ∈ S.

The Markov property is equivalent to

P(Zt+k = j | Zt = i, Zt−1 = it−1, . . . , Z0 = i0) = P(Zt+k = j | Zt = i), ∀k ≥ 1.

Roughly this states that, given the state at time t, the behaviour after time t is independent
of the behaviour before time t. In order to predict the future behaviour you need to know
the current position, but information about how the process reached the current position
(i.e. previous history) is of no further help.
In order to know the joint probability distribution

P(Z0 = i0, Z1 = i1, . . . , Zt = it)

we introduce the one-step transition probabilities

pt,t+1
ij = P(Zt+1 = j | Zt = i).

If
pt,t+1

ij = pij ,

namely the one-step transition probabilities are indepdent of t (i.e. the transition proba-
bilities are the same at all times), we say that the Markov chain is stationary.
We shall consider only stationary Markov chains. The transition probabilities can be put
into a square matrix

P = (pij),

the rows and columns of which are indexed by the elements of S.

Example 1. A very simple model for the weather from day to day. If it is raining today
then the probability that it will rain tomorrow is 0.8 . If it is dry today, then the probability
that it will rain tomorrow is 0.4 . The state space = {rain,dry}. The transition matrix is

P =
( rain dry

rain 0.8 0.2
dry 0.4 0.6

)
.

1



Example 2. A maze used for training rats. There are 5 compartments labelled 1, . . . , 5
and connecting one-way doors. An untrained rat moves in a Markov chain according to
the transition matrixq

P =


0 1/2 1/2 0 0

1/3 0 1/3 1/3 0
1/3 1/3 0 0 1/3
0 0 0 1 0
0 0 0 0 1

 .

(Because the labels are 1, . . . , 5 it is not necessary to label the rows and columns of the
matrix.)

Example 3. Simple random walk with absorbing barriers at ±2 (, also known as drunk-
ard’s ruin). We shall spend some time looking in more detail at random walks later. Here
the state space is {−2,−1, 0, 1, 2}. States ±2 being absorbing barriers means that once
the object reaches ±2 it remains there. While the object is at one of the intermediate
states, the probabilities of moving one step to the right/left/not moving are p, q, r, given
non-negative numbers with sum 1. Here the transition matrix is

P =



−2 −1 0 1 2
−2 1 0 0 0 0
−1 q r p 0 0

0 0 q r p 0
1 0 0 q r p
2 0 0 0 0 1

.

What do you notice about the transition matrices we have examined?
In fact all the entries are non-negative and each row sum is 1. Such a (square) matrix is
called a stochastic matrix. Note also that, if we denote by 1 the column-vector with entries
labelled by the elements of S and each equal to 1, then P1 = 1. This can be interpreted as
1 is a right eigenvector of P corresponding to the eigenvalue 1. (Recall that in general λ is
an eigenvalue of the square matrix P if the equation Px = λx has a solution x 6= 0. Then x
is a corresponding right eigenvector.) So stochastic matrices always have the eigenvalue 1.

Now consider what happens in two steps starting from state i.

p
(2)
ij ≡ P(Zt+2 = j | Zt = i) =

∑
k∈S

P(Zt+2 = j & Zt+1 = k | Zt = i)

=
∑

P(Zt+2 = j | Zt+1 = k & Zt = i)P(Zt+1 = k | Zt = i)

(defn of conditional prob., all probs conditional on Zt = i)

=
∑

P(Zt+2 = j | Zt+1 = k)P(Zt+1 = k | Zt = i) (Markov property)

=
∑
k∈S

pkjpik = [P 2]ij . (defn of matrix multiplication)
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So P 2 is the transition matrix that describes movements over two time units. Similarly
Pn is the matrix of ‘n-step transition probabilities’.

The transition probabilities describe movements of the Markov chain from one state to
another. However, this is not enough to specify the probabilistic behaviour (or law) of the
process {Zt}t≥0. For this purpose, let us define the initial distribution

pi0 = P(Z0 = i0), i0 ∈ S.

Let us now explain that the transition matrix P and the initial distribution enable us to
find, at least in principle, any probability connected with the process, such such P(Zn = i)
or P(Z0 = i0, . . . , Zt = it). Indeed,

P(Xn = i) =
∑
k∈S

P(Z0 = k & Zn = i)

=
∑
k∈S

P(Z0 = k)P(Zn = i | Z0 = k)

=
∑
k∈S

pkp
(n)
ki .

Moreover, compute the joint probability

P(Z0 = i0, Z1 = i1, . . . , Zn−1 = in−1, Zn = in)
=P(Z0 = i0, Z1 = i1, . . . , Zn−1 = in−1)
× P(Zn = in | Z0 = i0, Z1 = i1, . . . , Zn−1 = in−1)

=P(Z0 = i0, Z1 = i1, . . . , Zn−1 = in−1)P(Zn = in | Zn−1 = in−1)
=P(Z0 = i0, Z1 = i1, . . . , Zn−1 = in−1)pin−1in

.

Repeating this procedure gives

P(Z0 = i0, Z1 = i1, . . . , Zn−1 = in−1, Zn = in) =P(Z0 = i0)pi0i1 · · · pin−1in

=pi0pi0i1 · · · pin−1in
.

Similarly, the conditional probability

P(Z1 = i1, . . . , Zn−1 = in−1, Zn = in | Z0 = i0) = pi0i1 · · · pin−1in
.

These show that once the initial distribution and the transition matrix are given, the
probability distributions of the Markov chain {Zt}t≥0 are determined.

The main object of this part of the course is to study the limiting behaviour of Pn as
n→∞. Sometimes there is a proper subset of the states which is closed in the sense that
once the process enters the set it can never leave it. There may also be states that may be
visited a few times, but which are eventually left for good. In many processes Pn tends to

3



a limit. Moreover each row of Pn tends to the same limit. But there are some exceptions
to this and the theory will enable us to recognise the exceptions.

Classification of states. If pii = 1, then i is an absorbing state.
A non-empty subset C of the state space is called a closed class if it is not possible to leave
C starting from a state in C, i.e. if for all states i ∈ C, j /∈ C, pij = 0.
The submatrix of P defined by the rows and columns indexed by the elements of C is then
a stochastic matrix.
An absorbing state on its own forms a closed class of size 1.
An irreducible closed class C is a closed class such that no proper subset of C is itself
closed. A Markov chain is irreducible if S is an irreducible closed class, i.e. if there is no
closed class other than S itself.
A state i is transient if the probability starting from i of never returning to i is positive.
This occurs if there is a state j which can be reached from i in one or more steps from
which it is not possible to get back to i. It can be shown that the states which are not in
any irreducible closed class are all transient.
A state is recurrent if the probability of sooner or later returning to i starting from i is 1.
If there are finitely many states, then all states in an irreducible closed class are recurrent,
and to determine the closed classes and the transient states, we just need to know which
elements of P are positive and which 0. (This question is more complicated in the case
where there are infinitely many states. That case is not treated in this course.)

Example 1 is irreducible; in Example 2, {5, 6} forms an irreducible closed class and states
1, . . . , 4 are transient; in Example 3, {−2}, {2} are irreducible closed classes and states
−1, 0, 1 are transient.

Example 4. Stock control. Suppose that ordering of new stock takes place at the end of
each week with a policy of not placing an order if there are one or more item remaining in
stock and, when no items remain in stock, of ordering sufficient to meet any unfilled orders
and make the stock up to three. The weekly demand has a known probability distribution;
0, 1, 2, or 3 with probability 0.2, 0.4, 0.3, 0.1 respectively. The demands in different weeks
are independent. We shall define the state as the number of items in stock at the end of
the week, counting unfilled orders as negative. The the state space is {−2,−1, 0, 1, 2, 3}.
For example State −2 occurs if there was one item in stock at the end of the previous week
and three items have been demanded. The transition matrix is



−2 −1 0 1 2 3
−2 0 0 .1 .3 .4 .2
−1 0 0 .1 .3 .4 .2

0 0 0 .1 .3 .4 .2
1 .1 .3 .4 .2 0 0
2 0 .1 .3 .4 .2 0
3 0 0 .1 .3 .4 .2

.

We might want to answer questions like: how often is an order placed, how often are you
unable to supply an item from stock, what is the average amount of stock held?
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This Markov chain is irreducible.

Example 5. Success runs. A coin is tossed independently until five heads in succession
have been obtained. We denote the state here as the number of consecutive heads (up
to 5) that have been obtained on the most recent tosses. S is {0, . . . , 5}. Suppose that the
probability of a head is p at each toss and denote 1 − p by q. How long does it take on
average? 

0 1 2 3 4 5
0 q p 0 0 0 0
1 q 0 p 0 0 0
2 q 0 0 p 0 0
3 q 0 0 0 p 0
4 q 0 0 0 0 p
5 0 0 0 0 0 1


Here the state 5 is an absorbing state and the other states are transient.

Example 6. Ehrenfest urn model for the diffusion of molecules of a gas through a mem-
brane. There are N particles in a container which has a permeable partition. At each time
point one of the particles chosen at random passes through the partition. Here we record
the state as the number of particles to one side of the partition, so S = {0, . . . , N}. When
the state is i, there is probability i/N that the next state is i−1, and probability (N−i)/N
that it is i+ 1. The transition matrix is



0 1 2 3 . . . N

0 0 1 0 0 . . . 0
1 1

N 0 N−1
N 0 . . . 0

2 0 2
N 0 N−2

N . . . 0
...

...
...

...
...

...
N 0 0 0 0 . . . 0


This is an irreducible Markov chain.

This illustrates one further phenomenon which occurs — periodicity. In Example 6 the
states that occur are altermately even and odd. If the process starts for example in state 0
then after an even number of steps it cannot avoid being in an even-numbered state, while
after an odd number of steps it must be in an odd-numbered state. This complicates the
description of the limiting behaviour of Pn. In fact there are two limit matrices, one for
the even powers and the other for the odd powers of P .
An irreducible Markov chain is said to have period d if the highest common factor (hcf)
of {n : p(n)

ii > 0} is d. It can be shown that this is the same for all states i in an irreducible
Markov chain. If the period is 1 it is usual to call the Markov chain aperiodic (i.e. it does
not have a period). Once again to recognise periodicity it is necessary only to know which
entries are positive and which 0. It is possible to invent Markov chains with any period
(Try it.); however any period greater than 2 will usually be obvious. Where the period
is 2, the states can be put into two classes (even/odd, white/black, etc.) and all steps of
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the process are from one class into the other, so that the process alternates between the
two classes. Sometimes you will have to think a bit to see whether this is possible.

A stationary distribution is a probability distribution π on S, thought of as a row-vector,
such that πP = π. It can also be called an equilibrium or steady state distribution. Note
that row i of P represents the probability distribution of the state reached in one step
starting from i, and yP represents the probability distribution of the state reached one
step after starting from a random position with probability distribution y (as a row-vector).
The idea is that if you start the process off with an equilibrium distribution, for example
by building this into a computer program simulating the process, then the probability
distribution of the state at any time remains the same. It is important to realise that in
doing this you do not actually look to see what the state is, because if you know it then
that changes the predictions you will make about its progress. You just have to trust that
the process has been started off at random according to your instructions.

Note that π is a left eigenvector corresponding to the eigenvalue 1. It follows from matrix
theory that a Markov chain with finitely many states must have a left eigenvector for
the eigenvalue 1. (It is not so elementary to show that this eigenvector can be take to
have its entries all non-negative, so that division by a suitable constant gives a probability
distribution.)

Theorem. An irreducible aperiodic Markov chain with finitely many states has a sta-
tionary distribution given by the row-vector π. Each row of Pn tends to π. If the chain
is periodic, then Pn does not tend to a limit but π still represents the proportion of time
that is spent in the various states in the long run.

No formal proof of this is given. However note that it is easy to show that, if Pn tends to
a limit, then every row of the limit is a left eigenvector of P . For Pn+1 = PnP . Suppose
that row j of the limiting matrix is y. Then picking the jth row and letting n→∞ gives
y = yP .

To investigate the limiting behaviour of Pn, first identify irreducible closed classes of states,
and periodicity. Then, in each irreducible closed class, solve the equations y = yP with
the sum of coefficients equal to 1. We look at some of the examples.

Example 1 is irreducible and aperiodic. y = (2, 1). Normalising gives (2, 1)/3. This gives
both rows of the limit of Pn. In the long run it rains on 2/3 of the days.

In Example 2, the states 5,6 form an irreducible closed class, and the other states are
transient. Each row of Pn tends to (0, 0, 0, 0, 2, 1)/3.

In Example 3, there are two absorbing states. We are not yet in a position to give the
limit. However we can say that the three central columns of Pn all tend to 0 because the
corresponding states are all transient. We shall find the probabilities of absorption at 2
starting from the intermediate states later.

Example 4 is irreducible and aperiodic. It can be shown that each row of Pn tends to
(5, 19, 40, 50, 40, 16)/170. So the states −2,−1, which correspond to having unfilled
orders, occur in the long run in 24/170 of the weeks.
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Example 5 has one absorbing state, and the other states are transient. So each row of Pn

tends to (0, 0, 0, 0, 0, 1).

Example 6 is irreducible but with period 2. The case of n = 5 will be illustrated. It
can be shown that the stationary distribution is the Binomial distribution B(5, 1

2 ) =
(1, 5, 10, 10, 5, 1)/32. Recall that this indicates the proportion of time that is spent in the
various states. Suppose first that the process starts in state 0. The after an even number
of steps it must be in an even-numbered state, while after an odd number of steps it cannot
be in an even-numbered state. So the probability is twice the probability in the equilibrium
distribution, but for the even-numbered states only. This gives

16P 2n →



0 1 2 3 4 5
0 1 0 10 0 5 0
1 0 5 0 10 0 1
2 1 0 10 0 5 0
3 0 5 0 10 0 1
4 1 0 10 0 5 0
5 0 5 0 10 0 1

.

The limit of the odd powers of P is similar except that the two kinds of row are inter-
changed.
Note that we can reorder the rows and columns to get the following forms:

16P 2n →



0 2 4 1 3 5
0 1 10 5 0 0 0
2 1 10 5 0 0 0
4 1 10 5 0 0 0
1 0 0 0 5 10 1
3 0 0 0 5 10 1
5 0 0 0 5 10 1

 16P 2n+1 →



0 2 4 1 3 5
0 0 0 0 5 10 1
2 0 0 0 5 10 1
4 0 0 0 5 10 1
1 1 10 5 0 0 0
3 1 10 5 0 0 0
5 1 10 5 0 0 0

.

The rest of this chapter will be concerned with random walks, a special kind of Markov
chain.
Example 7. Unrestricted simple random walk on the integers. There are infinitely many
states indexed by the integers. As before Zt is used to denote the state at time t. The
process moves in independent steps Xt just before time t, where Xt may be ±1 or 0
with probability p, q, r such that p + q + r = 1. Let Z0 be the initial state. Then
Zt = Z0 +

∑t
s=1Xs. We assume that p, q are strictly positive, but r may be 0. The

mean step size is p−q and the variance of step size is p+ q − (p−q)2 = v, say. The total
displacement after n steps has mean n(p−q) with variance nv. If n is large, the Central
Limit Theorem applies. Two cases arise:
(a) p 6= q, say p > q, then the mean displacement is O(n) and the standard deviation
is O(

√
n). In this case the process drifts off to infinity. The spread increases more slowly

than the mean. For any a, P(Zn ≤ a)→ 0 as n→∞.
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(b) p = q Here the mean displacement is always 0, but the standard deviation is√
2pn = O(

√
n). Suppose the initial position is 0, then for any a, P(Zn ≤ a) = Φ(a/

√
2pn)

→ 1/2. This process makes long excursions in both directions, returning to the starting
point occasionally. However it does not ‘drift off to infinity’ in either direction.

We turn next to questions of the type: How long does it take to return to the starting
point, or to reach a certain point? We now introduce absorbing barriers, as in Example 3.
The motion is as before until Zt becomes equal to a or b. (Assume a < b.) Once Zt = a
or b, all future steps are 0, i.e. the process stays for ever at the barrier and it has been
absorbed there. Suppose the starting position is k, where a < k < b. We shall set up
difference equations for the probability of being absorbed at a starting from k, which will
be denoted pa(k). This is done by a first step analysis. Starting from k there are three
possibilities for the first step, namely 1, −1, 0 with probability p, q, r. If the first step
is 1 then the subsequent probability of being absorbed at a is pa(k + 1). Similarly for the
other possibilities. Putting the probabilities together gives the difference equation

pa(k) = ppa(k+1) + qpa(k−1) + rpa(k) (a < k < b) (∗)(
=
∑

j

P(first step to j)P(absorption at a | first step to j)
)
.

This equation relates pa(k), pa(k+1) and pa(k−1). We shall solve for all relevant values
of k. We need also some boundary conditions. If the starting position is a then absorption
at a has already occurred, so pa(a) = 1, while if the starting position is b, absorption at b
has occurred so that absorption at a cannot occur. Thus pa(b) = 0.
The method is similar to that used for second order linear differential equations. The
general solution to (*) is found by solving the auxiliary equation

λk = pλk+1 + qλk−1 + rλk.

The roots are λ = 1, p/q. There are two distinct roots unless p = q.
Exercise. Check that, in the case of p 6= q, A+B(q/p)k = pa(k) satisfies (*), where A, B
are arbitrary constants. In the case of p = q the general solution is A+Bk.

Finally we use the boundary conditions to determine the appropriate values of A, B. The
solutions are

in case p 6= q,
(q/p)b − (q/p)k

(q/p)b − (q/p)a
; in case p = q,

b− k
b− a

.

You should check that these have the correct form and satisfy the boundary conditions.

Note that, for the case of p = q the probabilities as a function of k lie on a straight line.
If q > p the points lie on a curve that is concave, i.e. lies above any chord. Absorption
at a is likely unless the starting point is very close to b. On the whole the movement tends
to be to the left.
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Equation (*) also applies to the probability of absorption at b, but the boundary conditions
are changed. It can be shown that the solutions are

in case p 6= q,
(q/p)k − (q/p)a

(q/p)b − (q/p)a
; in case p = q,

k − a
b− a

.

Note that in all cases pa(k) + pb(k) = 1, i.e. there is probability 0 that the process is not
eventually absorbed.

We can use these results to get the limiting behaviour of the transition matrix in Example 3.
If p = q it is 

1 0 0 0 0
.75 0 0 0 .25
.5 0 0 0 .5
.25 0 0 0 .75
0 0 0 0 1

 .

Time until absorption. Denote the mean time till absorption starting from k by T (k)
for a ≤ k ≤ b. We assume that this is finite. Again we set up difference equations. The
first step analysis proceeds as before, but this time we are dealing with time and we note
that one time unit is used up in making the first step. The equation obtained is

T (k) = pT (k+1) + qT (k−1) + rT (k) + 1 (a < k < b) (∗∗)
( = expected further time after the first step + 1).

The boundary conditions are T (a) = T (b) = 0.
The general solution to the homogeneous equation (*) (complementary function) is the
same as before. We need to find a particular solution. To do this in the case of p 6= q,
try the function ck, where c is a constant to be determined. Substitution for T (k) in (**)
gives c = 1/(q − p). In the case of p = q the function ck satisfies (*), so try ck2 instead.
This time we get the solution c = −1/(2p).

You should check that for the case of p = q, T (k) = (k−a)(b−k)
2p .

Example 8. A person has £9 and is very keen to increase this sum to £10. There is an
opportunity to place a stake and then play a game in which the probability of winning
is 0.4 . If the player wins (s)he receives an amount equal to the stake in addition to having
the stake repaid. In the event of losing the stake is lost. The player is allowed to choose
the stake (in multiples of 10p). The games are independent. How should the player choose
the stake to maximise the probability of attaining a capital of £10?
First consider this as a random walk with p = 0.4, q = 0.6 . Consider placing a stake of £1
each time. Represent the state as the capital in £. The initial position is 9. We place
absorbing barriers at 0 and 10 and we are required to find the probability of absorption
at 10. Using the formula above, we get (1.59−1.50)/(1.510−1.50) = 0.661 . The expected
value of the final sum is £6.61 . Now consider betting 10p each time. Represent the state
as the amount of money held as a multiple of 10p. The initial state is 90 and the absorbing
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barriers are at 0 and 100. The probability of reaching £10 is now 0.017 and the expected
final capital is only 17p.
This leads to the idea of betting as large an amount as we can, more precisely, whichever
is less of the capital and the amount by which the capital is short of £10. Initially bet £1.
If the first game is lost, the capital will stand at £8 so bid £2 the next time. If the game
is lost, the capital will be £6, and bid £4 next. If this is lost then only £2 remain so
bid £2. If the game is lost, no money remains, but if it is won the capital is £4 and £4
should be bid. This is a Markov chain with states {0, 2, 4, 6, 8, 9, 10}, and states 0 and
10 are absorbing. We can perform a first step analysis. Use notation pk to denote the
probability of reaching 10 starting from k. We get the following equations.

p9 = .4 + .6p8 p8 = .4 + .6p6 p6 = .4 + .6p2 p2 = .4p4 p4 = .4p8

Solving these gives p9 = .807, and the expected final amount is £8.07 .

Exercise. Use first step analysis to find the mean times till absorption in Example 5.

[ Answer: Starting from 0, p−5−1
1−p .]

Work out the numerical values of these times from each starting point for p = 1/2, 2/3.
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