
DEPARTMENT OF MATHEMATICS AND STATISTICS

53304 Outline lecture notes

3. Branching Processes

We shall be modelling the following situation. Each individual in some population pro-
duces a random number of offspring. The offspring of all the members of the population
at one time together make the next generation. We assume that individuals act indepen-
dently, and that the probability distribution {pr : r = 0, 1, 2, . . .} is the same for each
individual and its pgf is G(s). Note that time is taken to be discrete, and that it is as-
sumed that the individuals reproduce once and then die. This might apply to animals
whose life-cycle takes one year if we restrict our attention to just one sex. (The discrete-
ness of time is not important for discussing questions of ultimate extinction, or number of
‘grandchildren’, etc.)

Examples. History of surnames. Consider the population of males only.
Mutant genes. Sometimes a mutation occurs in the genes of an organism. This may be
passed onto its descendants and may ultimately die out. Here we might study just those
individuals who carry copies of the mutant gene.
Neutron chain reactions. A neutron collision creates a random number of new neutrons.

We shall be studying the growth and the probability of extinction of the population.

Mean, variance of the size of the nth generation.

Xn will denote the number of the descendants of one individual in the nth generation. Let
µ, σ2 denote the mean and variance of the number of offspring of one individual, so we
take X0 to be 1.

Let µn, σ2
n denote the mean and variance of Xn. The argument works by induction on n

and a first step analysis.
We calculate µn+1 ≡ E(Xn+1) in terms of µn for n > 0.
With prob. p0, X1 = 0 and then Xn+1 = 0.
With prob. p1, X1 = 1 and then the mean of Xn+1 = µn.
With prob. p2, X1 = 2 and then the mean of Xn+1 = 2µn.
And so on. So E(Xn+1) ≡ µn+1 =

∑∞
r=0 rprµn = µµn. Clearly µ1 = µ, and so, by

induction on n,
µn = µn.

Note that, if µ < 1, then E(Xn)→ 0 as n→∞; if µ > 1, then E(Xn)→∞;
and, if µ = 1, E(Xn) is always 1.

Conditional on X1=r, Xn+1 has mean rµn and variance rσ2
n. So E(X2

n+1) ≡ µ2
n+1+ σ2

n+1

=
∑
pr(r2µ2n+rσ2

n) = (µ2+σ2)µ2n + µσ2
n and σ2

n+1 = σ2µ2n + µσ2
n. The first few values

are σ2
0 = 0, σ2

1 = σ2, σ2
2 = σ2(µ2+µ), σ2

3 = σ2(µ4+µ3+µ2).
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It can be checked that, in general,

σ2
n =

{
nσ2 if µ = 1
σ2(µ2n−1−µn−1)/(µ−1) otherwise .

If µ > 1, σ2
n ∼ σ2µ2n−1/(µ− 1) for large n. This tends to ∞.

If µ < 1, σ2
n ∼ σ2µn−1/(1− µ) for large n. This tends to 0.

Extinction probability. We use en to denote the probability of extinction by genera-
tion n. Clearly e1 = p0. Now use first step analysis to find en+1 in terms of en for n > 0.
With prob. p0, X1 = 0 and then Xn+1 = 0.
With prob. p1, X1 = 1 and then the conditional prob. that Xn+1 = 0 is en.
With prob. p2, X1 = 2 and then the conditional prob. that Xn+1 = 0 is e2n, since the
descendants of both of the offspring would have to have died out within n generations.
With prob. p3, X1 = 3 and then the conditional prob. that Xn+1 = 0 is e3n. And so on.
So en+1 =

∑
pre

r
n = G(en).

Example 1. p0 = 1
2 = p2. Here µ = 1, σ2 = 1, G(s) = (1 + s2)/2. Each individual has

0 or 2 offspring. The sequence of extinction probabilities begins 0.5, 0.625, 0.695, 0.742,
0.775. We shall see shortly that this sequence tends to 1. The probability is 1 that the
population becomes extinct eventually. (Note however that the mean population size is 1
in all generations!) What happens is that often it dies out quite quickly. Sometimes the
population will however grow quite large over a lengthy period of time, but the probability
is 0 that it does not eventually become extinct. You should try to simulate this model
(using GASP or just by tossing a coin) several times to get a feeling for this.

Example 2. p1 = 3
4 , p2 = 1

4 . Here µ = 5
4 , σ2 = 3

16 . There is no chance of extinction. The
population continually grows. µn = ( 5

4 )n, σ2
n ∼ 3

4 ( 5
4 )2n−1.

Example 3. p0 = 1
4 , p2 = 3

4 , G(s) = (1 + 3s2)/4, µ = 3
2 , σ2 = 3

4 , σ2
n ∼ ( 3

2 )2n. The first
few extinction probabilites are .250, .297, .316, .325. We shall see later that these converge
to 1/3.

Example 4. Each female bird lays three eggs, each of which independently has probabil-
ity p of being female and surviving to adulthood. Here µ = 3p, σ2 = 3p(1− p).

Example 5. A large number of eggs laid by a female fly. The distribution of the number
that result in female adult flies is Poisson with mean λ. Here µ = λ, σ2 = λ.

Theorem 1. The pgf for Xn is G(. . . G(G(s)) . . .), with n G’s in the formula. We denote
this by G(n)(s).

The proof is by induction on n and a first step analysis. Temporarily we use the nota-
tion Gn(s) for the pgf of Xn. Clearly G1(s) ≡ G(s).
With prob. p0, X1 = 0 and then Xn+1 = 0 and the pgf = 1 = (Gn(s))0.
With prob. p1, X1 = 1 and then Xn+1 has pgf (Gn(s))1.
With prob. p2, X1 = 2 and then Xn+1 has pgf (Gn(s))2.
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(This is the pgf of the total number of the descendants in generation n of the two inde-
pendent members of generation 2.)
With prob. p3, X1 = 3 and then Xn+1 has pgf (Gn(s))3. And so on.
So Gn+1(s) =

∑
pr(Gn(s))r = G(Gn(s)).

The result follows by induction on n.

Corollary. en = G(n)(0), the extinction probability by generation n. We saw this result
before.

Theorem 2. The probability of eventual extinction is given by the smallest root of the
equation s = G(s) in the interval 0 ≤ s ≤ 1.

Proof. First note that 1 is always a root of the equation(, because G(1) is always 1).
Next we look at three easy (and boring!) special cases.
(a) p0 = 1. Here there are never any offspring. The population becomes extinct in
generation 1, G(s) ≡ 1 and the only root of the equation is 1.
(b) p1 = 1. Here every individual has exactly one offspring. The population size is always 1,
G(s) ≡ s, all numbers are roots of the equation, and the smallest in the relevant interval
is 0.
(c) p0 = 0. Here every individual has at least one offspring, so there is no chance of the
population’s dying out, G(0) = p0 = 0 and 0 is a root of the equation. It is certainly the
smallest root in the interval of interest. (This includes Case (b).)
In other cases G(0) > 0, the curve y = G(s) is continuous and strictly increasing on [ 0, 1 ].
(Why?) We denote the smallest root of s = G(s) by x (> 0). If 0 ≤ s < x, then
s < G(s) < G(x) = x. So {G(n)(0)} is an increasing sequence that is bounded above by x.
It must converge to a limit l say and l ≤ x. Letting n → ∞ in G(n+1)(0) = G(G(n)(0))
gives l = G(l), and it follows that l = x.

Relation to µ. µ =
∑
rpr = G′(1), the gradient of the curve y = G(s) at the point (1,1).

(a) µ > 1. The curve lies below the line y = s immediately to the left of the point (1,1).
So there has to be a root of G(s) = s between 0 and 1, and the probability of extinction
is strictly less than 1.
(b) µ < 1. The curve lies above the line y = s immediately to the left of the point (1,1).
Now G′′(s) ≥ 0 over the range [ 0, 1 ]. (Why?) So the curve and the line cannot cross again
in the interval. The probability of extinction is 1.
(c) µ = 1. In case (b) of Theorem 2, we saw that the extinction probability is 0. In all
other cases, G′′(s) > 0 over [ 0, 1 ], and as in Case (b) we get the probability of extinction
equal to 1.

Exercise. Show that except in Case (b) of Theorem 2, there are at most two roots to the
equation G(s) = s in [ 0, 1 ].

Example 6. The number of offspring has a modified Geometric distribution. This means
that there are numbers b, c, k with 0 < c < 1, 0 ≤ b < 1 such that p0 = b, pr = kcr

for r = 1, 2, . . .. To get a probability distribution, we require also that ck = (1− c)(1− b).
(Check this.)
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G(s) = (b−s(b+c−1))/(1−sc). Then µ = (1−b)/(1−c), σ2 = (1−b)(b+c)/(1−c)2. (Check.)
The probability of eventual extinction is the smaller root of the equation G(s) = s, namely
min(1, b/c), that is b/c if b < c, 1 otherwise.
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