
DEPARTMENT OF MATHEMATICS AND STATISTICS

53304 Outline lecture notes

4. Simple Processes in Continuous Time

Poisson process. This can be used to model traffic passing on a road, errors in electronic
transmission, misprints in text, customers arriving at a service point. There is one positive
parameter λ denoting the average rate per unit time. The integer-valued process Xt,
t > 0, denotes the number of events that have occurred between time 0 and time t. It
is assumed that the numbers of events in disjoint intervals of time are independent, that
the probability of two or more events in a short time interval of length h is o(h) and that
the probability of one event is λh+o(h). Now divide the interval (0, t ] into n equal pieces
of length t/n, thinking of n as large. The probability that k events have occurred in the
interval is given by a probability for the Binomial distribution with parameters n, λt/n.
It is

(
n
k

)
(λt/n)k(1− λt/n)n−k and this tends to e−λt(λt)k/k! as n→∞. Thus the number

of events occurring in an interval of length t follows a Poisson distribution with mean λt.
It follows that the probability of 0 events is e−λt. We can use this to get the distribution
of the time till the the first event. The probability that this is before time t is 1− e−λt.
This is the cdf for the time of the first event. To get the pdf we differentiate wrt t, to
obtain λe−λt. This is the pdf of the exponential distribution with mean 1/λ. So, in a
Poisson process with rate λ, the time till the first event follows an exponential distribution
with mean 1/λ.
The same argument applies to the time till the next event starting from any point in time,
whether or not an event has occurred there.

Exercise 1. We have observed a Poisson process for the interval (0, t ] and have seen
n events at times t1 < t1 < . . . < tn. Find the maximum likelihood estimate of λ.
[The likelihood is λe−λt1λe−λ(t2−t1) . . . λe−λ(tn−tn−1)e−λ(t−tn), (the last factor represent-
ing the probability of no events in the interval (tn, t ] ). This is λneλt. Take logs and
differentiate wrt λ. Setting the derivative equal to 0 gives the estimator λ̂ = n/t. This is
the total number of events seen divided by the time, as you might expect.]

Exercise 2. Customers arrive at a shop in a Poisson process with rate 20 per hour.
Calculate the probability that there are 4 customers in the first 15 minutes and 6 in the
next 15 minutes.
[ e
−10510

4!6! = 0.0257.]

Exercise 3. At time 0 a bus has just departed from a bus stop and there are no people
waiting. Suppose that the time of arrival of the next bus has a uniform distribution on
(5, 10 ] minutes and that people arrive at the bus stop in a Poisson process with rate 0.4
per minute. Find the mean and variance of the number of people waiting when the next
bus comes.
[ Use a time unit of 5 minutes. So the rate for the Poisson process is 2 per time unit.
Denote by T the time of arrival of the next bus, uniform on (1, 2 ] time units. XT will
denote the
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number of passengers waiting at time T . Now E(XT | T = t) = 2t and V(XT | T = t) = 2t
so E(X2

T | T = t) = 2t + 4t2. Now T is a random quantity with pdf 1 on (1, 2 ]. So
E(XT ) =

∫ 2

1
2t dt = 3 and E(X2

T ) =
∫

(2t+ 4t2) dt = 12 1
3 , and V(XT ) = 31

3 .]

Exercise 4. XT denotes a Poisson process with rate 2. Find P(X1 = 2 & X3 = 6) and
P(X1 = 2 | X3 = 6).

[ e−2 22

2! e
−4 24

4! . (Use disjoint intervals!) Divide this answer by e−6 26

6! to get
(
6
2

)
2
6

2 4
6

4. Note
that this is a probability from the Binomial distrbution with parameters 6, 2/6. This is a
general result.]

Exercise 5. For the process of Exercise 4 find P(X(3) ≥ 3 | x(1) ≥ 1).
[ Answer: (1−e−2−12e−6)/(1−e−2).]

Theorem.
Conditional on there being n events of a Poisson process in an interval of length t, the
number occurring in a subinterval of length s follows a Binomial distribution with parame-
ters n, s/t. This can be interpreted to say that each of the n events is uniformly distributed
on the interval of length t and that the separate events are independent. The rate of the
underlying process is not relevant.

Proof. Assume that 0 < s < t and prove the result for the intervals (0, s ] and (0, t ]. Take
k such that 0 ≤ k ≤ n and calculate the probability that there are k events in (0, s ] given
that there are n in (0, t ].

P(Xs = k | Xt = n) =
P(Xs = k & Xt −Xs = n− k)

P(Xt = n)
(disjt ints)

= e−λs
(λs)k

k!
e−λ(t−s) (λ(t− s))n−k

(n− k)!

/ (
e−λt

(λt)n

n!

)
=
(
n

k

)(s
t

)k(
1− s

t

)n−k
.

Superposition and thinning
Superposition of independent Poisson processes, Xt and Yt with rates λ, µ. Zt is the union
of the events of Xt and Yt. The probability that two or more events occur in a short
interval of length h is o(h) + o(h) + λµh2 = o(h). The probability of one event is λh+µh.
Conversely let Zt be a Poisson process with rate ν. Form the processes Xt and Yt by
assigning the events of Zt independently with probability α to Xt and otherwise to Yt.
The assignment is also independent of the process Zt. For the probability of two or more
events in the Xt process is a short interval of length h is o(h), while the probability of one
event is λαh. Moreover Xt and Ys are independent. This is obvious over disjoint intervals.
Consider the same interval (0, t]. Now

P(Xt=k & Yt=j) = P(Zt=j+k & j out of j+k are assigned to process Xt)
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= e−ν
νj+k

(j+k)!

(
j+k
j

)
αj(1−α)k = e−λj

αjνk

j!
e−λk

(1−α)kνk

k!
= P(Xt=j) P(Yt=k).

Exercise 6. Xt, Yt denote independent Poisson processes with rates λ, µ. Find the
probability that the first event occurring in the two processes is from process Xt. Find
also the probability that two events from Xt occur before two from Yt. (Here Xt might
represent cars and Yt might represent lorries.)
[ We get two X’s before two Y ’s if the sequence begins in one of the following ways: XX,
XYX, Y XX. The probability is

( λ

λ+ µ

)2

+ 2
λ2µ

(λ+ µ)3
=
λ2(λ+ 3µ)
(λ+ µ)3

. ]

Exercise 7. Customers arrive in a Poisson process at rate λ. At regular times T, 2T, . . .
they are processed as a batch. The overhead cost of processing a batch is c and the costs
of making a customer wait are d per unit time. Find the mean cost per unit time, and
recommend a value of T to minimise this.
[ The average waiting time for each customer is T/2 (Why?), so the mean cost per interval
of length T is c+dλT 2/2. To minimise the mean cost per unit time set T =

√
2c/(dλ). ]

Simple random walk in continuous time.

The steps form a Poisson process of rate λ. With probability p a step is +1 and with
probability 1 − p it is −1. The steps are independent. The positive and negative steps
form independent Poisson processes Xt, Yt with rates λp, λ(1−p) respectively. (Thinning.)
Now Zt, the displacement in time t, is Xt−Yt. E(Zt) = λt(2p−1). (Note that this is
E(no. of steps)×E(step size).) V(Zt) = V(Xt) + V(Yt) = λt.
Where absorbing probabilities are introduced the absorption probabilities are the same
as for the discrete time case. The mean time till absorption is as for the discrete case
multiplied by 1/λ, the mean time taken to perform one step.

Simple birth process (Yule process). NOT EXAMINABLE
Here Xt denotes the size of a population at time t. Each individual gives birth to new
individuals at a rate of λ per unit time, different individuals being independent. This differs
from the Poisson process in that the larger the population gets, the faster the increase in
its size. It can be used to model (for a limited duration) a biological population of, say,
bacteria in which there is no mortality, and plenty of food is available. The mathematical
techniques that are used here will be used later in some slightly more complex models. We
suppose that the population size is initially 1, i.e. X0 ≡ 1.

We set up differential equations for Pn(t), which denotes P(Xt = n). Consider the event
{Xt+h = n}, where h is a small positive number (which will eventually tend to 0) and
n > 1. Now at time t the population size might have been n and no births happened in
the interval (t, t + h ] with probability 1 − nλh + o(h) , or it might have been n−1 with
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1 birth occurring. This has probability (n−1)λh+ o(h). Other possibilities involve two or
more births during a short interval and these have probability that is o(h) and they will
be ignored. So Pn(t + h) = Pn(t)(1 − nλh) + Pn−1(t)(n − 1)λh + o(h). Rearranging this
equation gives

Pn(t+ h)− Pn(t)
h

= −nλPn(t) + (n−1)λPn−1(t) + o(1) as h→ 0 + .

In the limit we get P ′n(t) = −nλPn(t) + (n−1)λPn−1(t).
The equation for P1(t) is slightly simpler: P ′1(t) = −λP1(t). Solving this (with the
initial condition P1(0) = 1) gives P1(t) = e−λt.
Check that the following functions are solutions Pn(t) = e−λt(1−e−λt)n−1, for n > 1.
(Here the initial condition is Pn(0) = 0.) This says that the population at time t (> 0)
follows a geometric distribution with ‘p’ = e−λt, so that the mean is 1/‘p’ = eλt. This is
the equation for exponential growth.
When the population size is n the birth rate is λn per unit time and the time till the next
birth follows the exponential distribution with mean 1/(λn). This time is sometimes called
the sojourn time in state n.

Simple queues.
All our queues will be Markov processes, and for this we need to have exponential service
times. Let W (> 0) denote the duration of a service. The pdf is µe−µt, E(W ) = 1/µ,
V(W ) = 1/µ2 (see 53201). A useful feature to note is that for any positive number c,
P(W > c) =

∫∞
c
µe−µt dt = e−µc. Applying this gives, for h a small positive number,

P(W > c+ h |W > c)= P(W > c+ h)/P(W > c) = e−µh ∼ 1 − µh. This can be inter-
preted as, given that a service is in progress at time c, then the probability that it is still
in progress at time c+ h is approximately 1−µh. This does not depend on the value of c,
i.e. the process ‘has no memory’ of when the service started. The probability that the
service is completed within time h is approximately µh. So µ can be interpreted as the
completion-of-service rate. We use this idea to set up d.e.’s for queues with exponential
service times.

M/M/1. This notation represents a queue with Poisson arrivals, exponential service times
and a single server. We denote the arrival rate by λ and the service rate by µ per unit time.
We shall set up d.e.’s for the probability Pn(t) that there are n customers in the queue at
time t and will find the stationary distribution of queue size. The queue size will always
include the customer being served if there is one. So queue size 0 means that there are no
customers present, queue size 1 means that there is one customer who is being served but
no one is waiting, etc.
First consider the event that the queue size is 0 at time t+h, where h is small and positive.
Then there might have been queue size 0 at time t with no events during the small interval,
which has probability 1−λh+o(h), or the queue size might have been 1 at time t and the
service of the one customer was completed, which has probability µh+o(h). Other possi-
bilities involve two or more arrivals or departures and have probability o(h). They will be
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ignored. So P(Xt+h=0) = P(Xt=0)(1− λh) + P(Xt=1)µh+ o(h). Rearranging
gives

P0(t+ h)− P0(t)
h

= −λP0(t) + µP1(t) + o(1) as h→ 0 + .

Letting h→ 0+ gives P ′0(t) = −λP0(t) + µP1(t).
For n > 0 consider the event that the queue size is n at time t + h. Then the queue size
at time t might have been n with 0 events occurring in the interval which has probability
1−λh−µh+o(h), or it might have been n+1 with the service of one customer completed
in the interval and 0 arrivals which has probability µh+o(h), or it might have been n−1
with one new arrival and no service completion which has probability λh+o(h). The other
possibilities involve two or more arrivals or departures and have probability o(h). A similar
argument to the one above gives P ′n(t) = −(λ+ µ)Pn(t) + µPn+1(t) + λPn−1.
We look for a stationary distribution {Pn} of queue size. This will not change with t and
so we set the LHS of the equations to 0. We get P1 = λ

µP0, P2 = (λ+µ)P1−λP0
µ = (λµ )2P0,

P3 = (λ+µ)P2−λP1
µ = (λµ )3P0, and in general Pn = (λµ )nP0.

The probabilities are in geometric progression. The series will converge iff the common
ratio λ/µ is less than 1. This means that λ < µ, i.e. that the rate at which the customers
arrive is less than the rate at which the services are completed. There is a stationary
distribution only in this case. If λ ≥ µ the queue size will tend to infinity, because the
server is unable to cope.
For a stationary distribution, P0 = (µ− λ)/λ (to make the sum of all the probabilities equal
to 1), and the queue size plus 1 follows a Geometric distribution with ‘p’ = (µ− λ)/µ. The
mean queue size is µ/(µ− λ)− 1 = λ/(µ− λ). The variance of queue size is λµ/(µ− λ)2.

M/M/1 with baulking. The same model except that any customer who would arrive
when the queue size is a given numberK (or more) does not actually join the queue, but dis-
appears from the system. This can be used to model the situation of a waiting room of lim-
ited capacity (K−1). The same equations as before work for n ≤ K−1. Then PK(t+ h)
= PK(t)(1− µh) + PK−1(t)λh+ o(h), and hence P ′K(t) = −µPK(t) + λPK−1(t).
For a stationary solution we get PK = λ

µPK−1, so the probabilities form a (finite) geo-
metric progression with common ratio λ/µ. The possible queue sizes are {0, 1, . . . , K}.
There is no restriction on λ, µ.
Exercise 8. Show that the probability that a potential customer baulks (i.e. tries to arrive
when the queue size is K and so is lost from the queue) is (λµ )K(1 − λ

µ )/(1 − (λµ )K+1).
What about the case where λ = µ?

M/M/∞. Here there are infinitely many servers. It can be used to model a telephone
switchboard where there are plenty of lines available for the calls that may be made. There
is no waiting, because each call is connected as soon as it arrives. The queue size is just
the number of calls in progress.
When the queue size is n, the probability that one of the calls is finished in a short interval
of length h is nµh + o(h). A similar argument to that used for M/M/1 gives the d.e.’s
P ′n(t) = −(nµ+λ)Pn(t) + λPn−1(t) + (n+1)Pn+1(t) for n > 0 and
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P ′0(t) = −λP0(t) + µP1(t). As before we look for a stationary solution Pn, for which the
derivatives are 0. We get P1 = λ

µP0,

−(λ+µ)P1 + λP0 + 2µP2 = 0 so P2 = (λ+µ)P1−λP0
2µ = 1

2! (
λ
µ )2P0,

P3 = 1
3! (

λ
µ )3P0, and in general Pn = 1

n! (
λ
µ )nP0.

We see that this defines a Poisson distribution with mean λ/µ, and P0 = exp(−λ/µ).

M/M/s. Similar queue with s servers. This is a kind of hybrid of the M/M/1 and
M/M/∞. So long as the number of customers in the system is no greater than s, there
is no waiting. When further customers arrive they wait until a server becomes free. The
completion of service rate is nµ when the queue size is n ≤ s and sµ when the queue
size n ≥ s. The d.e.’s are P ′n(t) = −(λ+nµ)Pn(t) + λPn−1(t) + (n+1)µPn+1(t) for
1 ≤ n < s, and P ′n(t) = −(λ+nµ)Pn(t) + λPn−1(t) + sµPn+1(t) for n ≥ s.
Check that the stationary distribution Pn is given by Pn = 1

n! (
λ
µ )nP0 for 0 ≤ n ≤ s

and Ps+k = ( λsµ )kPs for k ≥ 0. The first part of this is like a Poisson distribution and
after n = s it is a Geometric distribution with common ratio λ/(sµ). To get a stationary
distribution we require convergence, i.e. λ < sµ. This says that the arrival rate must be
less than the rate at which the s servers can work.

Exercise 9. A queue has three servers, arrival rate 2 and completion-of-service rate 1.
Find the stationary distribution of queue size, the probability that a customer has to wait,
and the mean waiting time. Assume that the queue discipline is first-come first-served.

[ Here λ = 2, µ = 1, s = 3. P1 = 2P0, P2 = 1
2!2

2P0, P3 = 1
3!2

3P0, P3+k = ( 2
3 )k 23

3! P0 for
k > 0. The sum of the probabilites is P0(1 + 2 + 2 + 4

3 (1/(1− 2
3 )) = 9P0. So P0 = 1

9 , and
the probabilites are 1

9 ,
2
9 ,

2
9 ,

4
27 ,

8
81 , . . .. The probability that a customer has to wait is 4

9
(probability that queue size is more than 2 when (s)he arrives). Assuming that the queue
discipline is first come first served, the mean waiting time is 0 × 5

9 + 1 × 4
9 . To see this

note that, given that the customer has to wait, the number of customers who must have
their services completed before the waiting time ends follows a Geometric distribution with
‘p’ equal to 1/3. The mean time between service completions when all three servers are
occupied is 1/3. So the mean waiting time is 4/9.]
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