EUSIPCO-2010 Aalborg, Denmark

Distributed Video Coding with Particle Filtering for Correlation Tracking

L. Stankovic, V. Stankovic, S. Wang and S. Cheng University of Strathclyde, University of Oklahoma

Problem

Related correlation modelling approaches

- Modelling correlation error as a Gaussian or Laplacian random variable with statistics estimated from previously decoded frames
- Vary the correlation noise statistics from pixel to pixel depending on the pixel difference between motion compensated blocks of 2 key frames providing side information
- Motion estimation with unsupervised learning where messages are iterated between the SW Decoder and the motion estimation block to generate better side-information/update probability model (Varodayan et al., 2008)

Contribution

- Current approaches adjust the correlation model online from previously decoded frames, providing updated statistics to the Slepian-Wolf decoder
 - However, once Slepian-Wolf (SW) decoding starts, correlation model is fixed
- We incorporate correlation estimation within our iterative SW decoder fitted with a particle filter (PF) to estimate correlation at bit level
 - Motivation: standard belief-propagation-based SW decoder cannot track varying correlation and cannot handle continuous variables like correlation

Adaptive SW decoding with PF

- SW decoder based on belief-propagation (BP) decoding of LDPC code factor graph
- Add to the LDPC factor graph with N source nodes x and M syndromes: N' correlation variable nodes p and N correlation factor nodes f_i, where

$$f_i(x_i) = \begin{cases} 1-p, & \text{if } x_i = y_i \\ p, & \text{otherwise} \end{cases}$$

Factor graph construction

Non-stationarity of *p* over time

- Connect *p* nodes to correlation factor nodes, which in turn are connected to source variable nodes *x* to check if *x*=*y*
- Number of correlation factor nodes connected to each variable node *p* is termed connection ratio

Factor graph construction

Non-stationarity of *p* over time

• Insert additional factor nodes $f_{i,j}$ connecting adjacent p nodes

$$f_{i,j}(p_i, p_j) = \frac{1}{\sqrt{2\pi\lambda}} \exp\left(-\frac{(p_j - p_i)^2}{2\lambda}\right)$$

SW decoder graph with PF

Message passing algorithm

Initialize the values of message and particles

True, or maximum number of iterations reached

Export the decoded codeword

Particle filtering in Region 1

Parameters

- Tuneable parameters:
 - X and Y quantization ratio \rightarrow Q=3, 4, 5 bits/pixel
 - hyper-prior $\lambda \rightarrow 0.1$
 - connection ratio between regions 1 and 2 \rightarrow 16
 - Metropolis-Hastings random walk → enabled
 - maximum number of iterations \rightarrow 100
 - number of particles \rightarrow 10
 - initial estimate of correlation $p \rightarrow 0.13$
- 16 frames of Coast and Car sequences
- Assume that key frames available at the decoder are perfectly reconstructed
- Rate=number of syndrome bits/number of quantized bits

Results: Car video sequence

Results: Car video sequence

Results: Reconstruction of Frame 7 with Q=3

Without BPPF correlation tracking

With proposed system

Results: Coast video sequence

Results: Coast video sequence

Conclusions

- Performance improvement of DVC by incorporating correlation estimation via PF within the SW BP decoder
- ✓ Our PF-based BP helps estimate correlation evolving over time, improving SW decoder performance
- Developed a tool with a number of tuneable parameters, which can be optimised
- ✓ Our set-up can be used with DCT-based DVC, with/without feedback, and even with correlation noise modelling outside SW decoder

Further work

- SW BPPF decoding with bit-plane splitting
- Modelling correlation noise as AWGN or Laplacian
- > Optimise tunable parameters
- Use correlation estimation approaches prior to SW decoding to initialise parameters