Generally, if the duty cycle is encoded by $f(\delta)$, any effective transfer function can be generated within the $0 \leq \delta \leq 1$ voltage range of the basic converter. For example, in the case of the buck converter, any monotonically increasing output voltage profile can be produced in the range between zero volts and the input voltage magnitude. A lookup table mapping approach provides total flexibility.

Table 20.1: Mapped transfer functions

duty cycle mapping	$0<\delta<1$	$0<1-\delta<1$	$0<f(\delta)<1$
buck	δ	$1-\delta$	$f(\delta)$
boost	$\frac{1}{1-\delta}$	$\frac{1}{\delta}$	$\frac{1}{1-f(\delta)}$
buck-boost	$-\frac{\delta}{1-\delta}$	$-\frac{1-\delta}{\delta}$	$-\frac{f(\delta)}{1-f(\delta)}$

δ on-state duty cycle
Figure 20.2. The transfer functions of the three basic converters in terms of $\bar{\delta}$ and their complementary transfer functions in terms of $1-\delta$.

0.1 Basic generic smps transfer function mapping

The three basic smps, viz., the buck, boost and buck-boost converters, utilise a switch, diode and inductor, as shown in figure 20.1a, to realise their fundamental dc-to-dc conversion function. Figure 20.1b shows a general form of the circuit in figure 20.1a, where the function of the two switching ements have not been prejudged to be a diode and a unidirectional voltage and current switch. the switch T_{1} in the configuration of the circuit in figure 20.1a is controlled with an on-state duty cycle of δ, then the transfer functions associated with the buck, boost and buck boost converters are realised, as decoded in the table in figure 20.1. Although each transfer function is fixed, the output function can be modified by mapping the control parameter. For example, if the complement of the duty cycle δ is used to oost transfer function. The mapped transfer functions of the three basic converters, when controlled by the duty cycle complement 1-ס, are shown in Table 20.1 and are plotted in figure 20.2.

(a)

(b)

(c)

converter	ports	transfer function	nodes
forward /buck	B / A	δ	$\mathrm{xy} / \mathrm{xz}$
boost	A / C	$1 /(1-\delta)$	$\mathrm{xz} / \mathrm{yz}$
buck- boost	$-\mathrm{B} / \mathrm{C}$	$-\delta /(1-\delta)$	$\mathrm{yx} / \mathrm{yz}$

Chapter 19 introduced a single-switch, single-diode, first quadrant, dc-to-dc converter that employed two inductors and two capacitors, specifically the boost-buck Cuk converter. Many other converter variations exist that employ multiple capacitors and inductors, for example the zeta, \pm Luo, CSC, Landsman, and switch/diode topologies, where three of the thirty three are the basic buck, boost, and buck-boost opologies considered in Chapter 19. The extra reactive components yield topologies having new transfer unctions, for example the zeta converter produces a non-inverting buck-boost voltage output function. Other converter properties considered in this chapter are the discontinuous/continuous conduction boundary of the boost converter and current source dc to dc converters.

- Switched-Mode

Figure 20.1. Circuit elements of basic smps.
(a) circuit diagram; (b) generalised functional circuit; and (c) specific circuit components.

0.2 Basic generic current sourced smps

The smps considered in chapter 19 are based on a voltage source input, and are termed voltage-sourced converters. A switch, diode and inductor are T (tee) connected between the voltage source on the input and the capacitor-shunt decoupled load at the output, as shown in figure 20.3a. The three smps in figure 20.3b are current-sourced equivalents (duals) to the considered voltage-sourced buck, boost, and buckboost converters and each has the same corresponding voltage and current transfer ratio. The current Table 20.2. In these circuits figure 20.3b, the smps capacitor C is equivalent to the inductor L in a voltage-sourced smps, and the switch, diode and capacitor are π (pi) connected between the input current source and the series-inductor filtered output load. Just as the inductor is designed for a specific ripple current and continuous or discontinuous current conduction, the capacitor C in figure 20.3b is the dual, being designed to have a specific ripple voltage and may or may not reach zero charge within each cycle. The current boost circuit in figure 20.3b-ii is complementary to the voltage boost circuit in figure 20.3a-iii, in the sense of continuous input power. The voltage boost smps circuit can ensure continuous current (hence continuous input power) from a dc voltage (energy) source, while the current boost smps circuit can ensure a continuous non-zero voltage (hence continuous input power) at the output of a current (energy) source.
capacitor C_{0} in figure 20.3 age-sourced smps produce a voltage-sourcing output (due to output shunt sourcing output, because of the series output inductor Lo. In each current-sourcing case, bidirectional energy flow is achieved by using parallel diode/switch combinations, just as with the voltage-sourced converters, where bipolar capacitor voltages arise in the boost-buck case. In observing power conservation, the voltage transfer function is the inverse of the current transfer function
The current boost-buck converter in figure 20.3b-iv is the generic root of the Cuk converter (better generically called the boost-buck converter), where the current source input in figure 20.3 b - iv is replaced者 the other two current source converters, specifically giving figures 20.3c.

Table 20.2: Three current-sourced single switch smps
Tee canonical cell

Pi canonical cell

Pi canonical cell

$\frac{V_{o}}{E_{1}}=\frac{I_{i}}{I_{o}}$
$=f(\delta)$

\square
$i_{c} d t=C \times \Delta v$
(ii)

$\begin{array}{cc}1 & \frac{V_{o}}{E_{j}}=\frac{I_{i}}{I_{o}} \\ = \\ =\delta \\ \text { Voltage BUCK } \\ \equiv \begin{array}{c}\equiv \text { Current BOOS }\end{array}\end{array}$

Buck
(iii)

\equiv Current BUCK $\quad i_{c} d t=t_{o n} \times I_{o}=t_{\text {off }} \times\left(I_{i}-I_{o}\right) \quad \begin{aligned} & \text { Current BUCK } \\ & \equiv \text { Voltage BOOST }\end{aligned}$
(iv)

(a)

Current BOOST-BUCK
=Voltage BUCK-BOOST
Voltage BUCK-BOOST
(c)

Figure 20.3. Three basic converters: (a) voltage sources, (b) current sources, and (c) current source converted to equivalent voltage source plus series inductor

Characteristic	Current-sourced converters		
	Current step-up Buck voltage	Current step-down Boost voltage	Current reversal step up/down
$\begin{gathered} \Delta v_{c}= \\ t_{\tau}+t_{\text {off }}=\tau \end{gathered}$	$\frac{I_{o}-I_{i}}{C} t_{T}=\frac{I_{i}}{C}\left(\tau-t_{\tau}\right)$	$\frac{I_{o}}{C} t_{T}=\frac{I_{i}-I_{o}}{C}\left(\tau-t_{T}\right)$	$\frac{I_{o}}{C} t_{T}=\frac{-I_{i}}{C}\left(\tau-t_{T}\right)$
$\begin{aligned} \frac{I_{o}}{I_{i}} & =\frac{E_{i}}{V_{o}}= \\ 0 & \leq \delta \leq 1 \\ E_{i} \bar{I}_{i} & =V_{o} \bar{I}_{o} \end{aligned}$	$\frac{\tau}{t_{T}}=\frac{1}{\delta}$	$1-\delta$	$-\frac{1-\delta}{\delta}$
	$I_{o} \geq I_{i}$ thus $V_{o} \leq V_{i}$	$I_{o} \leq I_{i}$ thus $V_{o} \leq V_{i}$	$I_{o} \leq 0$
$\left.\begin{array}{l} \hat{v}_{c} \\ \bar{v}_{c} \end{array}\right\}=\bar{v}_{c} \pm 1 / 2 \Delta v_{c}$	$\begin{aligned} & =E_{i} \pm 1 / 2 \frac{I_{i}}{C}\left(\tau-t_{T}\right) \\ & =I_{i}\left[\frac{R}{\delta^{2}} \pm \frac{(1-\delta) \tau}{2 C}\right] \end{aligned}$	$\begin{aligned} & =\bar{V}_{o} \pm 1 / 2 \frac{I_{o}}{C} t_{T} \\ & =\bar{I}_{i}(1-\delta)\left[R \pm \frac{\delta \tau}{2 C}\right] \end{aligned}$	$\begin{aligned} & =\frac{V_{o}}{\delta} \pm 1 / 2 \frac{I_{o}}{C} t_{T} \\ & =I_{i} \frac{1-\delta}{\delta}\left[\frac{R}{\delta} \pm \frac{\delta \tau}{2 C}\right] \end{aligned}$
$\begin{aligned} & R_{\text {crit }} \geq \frac{V_{o}}{\bar{I}_{o}} \\ & =\frac{I_{i}}{I_{0}} \times \frac{(1-\delta) \delta \tau}{2 C} \\ & \text { when } \check{\Sigma}_{c}=0 \end{aligned}$	$\begin{aligned} & \frac{(1-\delta) \delta^{2} \tau}{2 C} \\ = & 1 / 2 \delta^{2} \frac{\Delta v_{C}}{I_{i}} \end{aligned}$	$\begin{gathered} \frac{\delta \tau}{2 C} \\ =1 / 2 \frac{1}{1-\delta} \frac{\Delta v_{c}}{I_{i}} \end{gathered}$	$\begin{gathered} \frac{\delta^{2} \tau}{2 C} \\ =1 / 2 \frac{\delta^{2}}{1-\delta} \frac{\Delta v_{C}}{I_{i}} \end{gathered}$
input/output voltage	continuous input voltage discontinuous output voltage	discontinuous input voltage continuous output voltage	discontinuous input voltage discontinuous output voltage
current reversibility voltage	$\begin{aligned} & \frac{1}{\delta} \leftrightarrow 1-\delta \\ & \delta \leftrightarrow \frac{1}{1-\delta} \end{aligned}$	$\begin{aligned} & 1-\delta \leftrightarrow \frac{1}{\delta} \\ & \frac{1}{1-\delta} \leftrightarrow \delta \end{aligned}$	$\begin{aligned} & -\frac{1-\delta}{\delta} \leftrightarrow-\frac{1-\delta}{\delta} \\ & -\frac{\delta}{1-\delta} \leftrightarrow-\frac{\delta}{1-\delta} \end{aligned}$
apparent load resistance $R_{i}=\left(\frac{I_{o}}{I_{i}}\right)^{2} R_{o}$	$\frac{1}{\delta^{2}} R_{o}$	$(1-\delta)^{2} R_{o}$	$\frac{(1-\delta)^{2}}{\delta^{2}} R_{o}$

Figure 20.4 shows that the output current magnitude monotonically decreases as the duty cycle δ ncreases. If required, monotonic current magnitude increase with increasing δ can be achieved by mapping δ with $1-\delta$, as considered in section 20.1. The current transfer functions for the current-sourced converters are then the same as for the voltages sourced converter voltage transfer functions.
Nine voltage sourced dc-to-dc converters, offering continuous input and output current, can be found in section 20.6, figure 20.7.

Figure 20.4. The current transfer functions of three basic current sourced converters in terms of δ.

20.3 Generic current sourced converters, converted to voltage sourced converters

The inputs of the three basic current source converters in figure 20.3 b can be made compatible with voltage sources by interposing inductance as shown in figure 20.3 c . The three resulting converters offer continuous input and output current operation due to series inductance on the input and output. This continuous input energy possibility is essential for renewable energy source interfacing, such as with photovoltaic arrays, if large, unreliable electrolytic capacitor decoupling is to be avoided

The output voltage V_{o} (and current I_{o}) of each converter is controlled by varying the switch T on-state duty cycle, $\delta=t_{T} / T$, usually assuming a fixed (voltage or current) energy-source, and continuous energy ow (continuous conduction mode, CCM) in the canonical pi or tee cell reactive component is also ssumed.
Analysis of the voltage-sourced circuits in figure 20.3a, in determining their voltage transfer function, $V_{o} /$ E_{i}, in a CCM, involves equating the volt-second ($V x t$) of the inductor during switch T on-period, t_{T}, and offperiod, $T-t_{T}$. The average inductor voltage $J_{V . d t}$ is zero if the instantaneous current is the same at the eginning and the end of the integration period τ, even if there is a constant dc bias current through the inductor. The inductor L is referred to as the controlling element in the sense that it controls the ripple current magnitude, hence energy transfer magnitude, whilst the switch T induced inductor voltage duty yycle specifies the energy transfer rate, hence the voltage transfer function, $f(\delta)$.

Analysis, I_{o} / I_{i}, of the current-sourced converters in figures 20.3 b and 20.3 c , is centred on the capacitor charge (Ixt) over one cycle, τ, under steady-state switch duty cycle δ and input/output conditions. The average capacitor current \int i.dt is zero if the instantaneous voltage is the same at the beginning and the end of the integration period τ, even if the capacitor holds a dc bias voltage. The capacitor C is referred to as the controlling element since it controls the ripple voltage magnitude, hence energy transfer magnitude; whilst the switch T induced capacitor current duty cycle specifies the energy transfer rate, hence the current transfer function, $1 / f(\delta)$
The result of the mesh analysis is that each voltage-source transfer function has a current source equivalent (a dual) with the identical transfer function, as shown in figure 20.3. In each corresponding case, the voltage transfer function is the reciprocal of the current transfer function, that is $f(\delta)=V_{0} / V_{i}=I_{i} /$, since $E_{i} \times I_{i}=V_{o} \times I_{o}$, that is, the average power in (from the energy source) is equal reactive L/C temporarily and cyclically stores energy during the energy transfer process.

20.4 Thirty-three dc-to-dc voltage source converters

Figure 20.5 tabulates thirty-three dc-to-dc converters, which use one switch, one diode and no more than two capacitors and two inductors. Family ' A ' is the three basic converters, namely the buck - A1, boost A2 and buck-boost - A5 converters considered in Chapter 19. Family ' C ' are the three converters in figure 20.3c, derived from the current source converters in figure 20.3b. Family Go produces transfer produces the positive (non-inverting) buck-boost function. Family 'P' comprises converters that produce the basic three transfer functions with zero average capacitor voltage, as considered in section 20.5 . Nine of the thirty-three converters in figure 20.5 offer continuous input and output current (topologies including all of family ' D '). Just as continuous output voltage topologies usually employ a shunt capacitor Co across the output (as with family 'A', the basic three converters) continuous output current topologies usually employ a series output inductor, Lo.
If two diode//switch pairs are used, all thirty-three converters are reversible, whilst the converters in series G (other than the zeta converter G 6) require the reversible pairs for operation over the full duty cycle range, $0 \leq \delta \leq 1$, in either direction of power flow.

Topologies in any column are cyclically related by repeatedly flipping (output port becomes the second port) and inversing (input and output ports are interchanged). The mathematical transfer function is also generated by this process (see section 20.10), without recourse to circuit analysis

By duality, thirty-three current source converter equivalent circuits exist.

ᄂ		\bigcirc				\cdots		$\stackrel{0}{2}$		-		-
ш		$\stackrel{\text { io }}{\stackrel{1}{5}} \text {, }$		\triangleright						∞		
\bigcirc		${ }_{i}^{1}$		$\stackrel{1}{2}$		$\begin{aligned} & \text { pos } \\ & \hline \end{aligned}$		-		$\stackrel{0}{\stackrel{p}{2}}$		\ldots
0		ゅ										
<												
	\checkmark		\sim		๓		*		\sim		\bigcirc	

	G	P
1		$\underset{\sim}{\sim}$
	- $\delta / 1-2 \delta$	P1: $\quad \delta$
2		
	1-28 /1-ס	P2: $1 / 1-\delta$
3	$\xrightarrow[\sim]{\sim}$	
	-б/1-2б	
4		
	1-28/1-ס	
5		
	sepic $\delta / 1-\delta$	P5: - $/ 1-\delta$
6		
	+ve Luo/zeta $\delta / 1-\delta$	

Figure 20.5. The thirty-three possible single-switch, single-diode dc to dc converters.

SMPS operate on ac circuit theory properties, specifically the dc input, dc output and zero voltages are at he same ac potential (short circuit all dc voltage sources). Thus specific topology remain operational the same ac potential (short circuit all dc voltage sources). Thus specific topology remain operational
(with a voltage transfer function change), when component connection to a dc potential is changed to (with a voltage transfer function change), when component connection to a dc potential is changed to
another dc potential, including 0 V . This concept is exploited in example 19.4 and can be applied to the C5 Cuk converter, as in example 20.1. The ground connected input switch can be connected to the output to create the G3 converter. If the output diode is connected to the input, the G4 converter is formed. Example 20.1 shows that factors, such as voltage transfer function, reversibility, etc. remain internal consistent.

Example 20.1: C5 (Cuk) converter topological conversion to G3 and G4 topologies

The ground connection of the switches in the C5 converter are reconnected as follows.
i The output diode ground connection is moved to the input forming a G4 converter
ii The input switch ground connection is moved to the output forming a G3 converter
Based on the C5 voltage transfer function, establish the G3 and G4 transfer functions

Solution
The voltage transfer function of the C5 buck-boost converter is

$$
\frac{v_{o}}{E_{i}}=-\frac{\delta}{1-\delta}
$$

i If the output side diode of C 5 is connected to the input, then the G4 topology is created.
The C5 transfer function can be rearranged as

$$
v_{o}=-E_{i} \frac{\delta}{1-\delta}
$$

The output diode reconnection to the input E_{i}, increases the output voltage by the input voltage. That is

$$
v_{o}=E_{i} \frac{-\delta}{1-\delta}+E_{i}=E_{i}\left(\frac{-\delta}{1-\delta}+1\right)=E_{i}\left(\frac{1-2 \delta}{1-\delta}\right)
$$

That is

$$
\frac{v_{o}}{E_{i}}=\frac{1-2 \delta}{1-\delta}
$$

which the G4 converter transfer function. The output inductor in both topologies filters the discontinuous voltage at its input and creates an output current source.
ii If the input switch of C5 is connected to the output, then the G3 topology is created.
The C5 transfer function can be rearranged as

$$
E_{i}=v_{o} \frac{1-\delta}{-\delta}
$$

The input side switch reconnection to the output v_{0}, increases the input voltage by the output voltage, viz.

$$
E_{i}=v_{o} \frac{1-\delta}{-\delta}+v_{o}=v_{o}\left(\frac{1-\delta}{-\delta}+1\right)=v_{o}\left(\frac{1-2 \delta}{-\delta}\right)
$$

That is

$$
\frac{v_{o}}{E_{i}}=\frac{-\delta}{1-2 \delta}
$$

which the G3 converter transfer function. The input inductor in both topologies filters the discontinuous voltage at the inductor's output and creates an input current source.

Example 20.1 illustrates two cases where the port dc voltage is additive. But the port voltage can also be subtractive, depending on the relative polarity of the input and output voltage and when reversing the connection changing process. Example 20.2 illustrates the zeta G 6 and sepic G 5 converters reconfigured
to create converters C 1 and C 2 .

Example 20.2: C1 and C2 converter topological conversion to G5 and G6 topologies

The switch and diode connection in the C1 and C2 converters are reconnected as follows.
i C1 converter:- the switch terminal connected to the output is grounded to form G5 i C1 converter:- the switch terminal connected to the output is grounded to form G5
ii C2 converter:- the diode anode connected to the input is grounded, forming a G6 converter Based on the C1 and C2 voltage transfer function, establish the G5 and G6 transfer functions, respectively.

Solution

The voltage transfer function of the C 1 converter is

$$
\frac{v_{o}}{E_{i}}=\delta
$$

i If the switch in C1 is connected to ground, then the G5 sepic topology is created.
The C 1 transfer function can be rearranged as

$$
E_{i}=v_{o} \frac{1}{\delta}
$$

The switch reconnection means the input is no longer added to the output, that is, it is subtracted:

$$
E_{i}=v_{o} \frac{1}{\delta}-v_{o}=v_{o}\left(\frac{1}{\delta}-1\right)=v_{o}\left(\frac{1-\delta}{\delta}\right)
$$

That is

$$
\frac{v_{o}}{E_{i}}=\frac{\delta}{1-\delta}
$$

which the $G 5$ sepic converter transfer function
ii If the diode of C 2 is connected to ground, then the G6 zeta topology is created
The C2 transfer function can be rearranged as

$$
v_{o}=E_{i} \frac{\delta}{1-\delta}
$$

With the diode grounded, the input component no longer opposes the output voltage. That is

$$
v_{o}=E_{i} \frac{1}{1-\delta}-E_{i}=E_{i}\left(\frac{1}{1-\delta}-1\right)=E_{i}\left(\frac{\delta}{1-\delta}\right)
$$

That is

$$
\frac{v_{o}}{E_{i}}=\frac{\delta}{1-\delta}
$$

which the G6 zeta converter transfer function.

20.5 Converters with zero average capacitor voltage

The last family of three dc-to-dc converter topologies in figure 20.6, (family ' P ' in figure 20.5), with buck, boost, and buck-boost voltage transfer functions, offer operation with zero average voltage across the controlling capacitor C . These three single-switch, single-diode, converters offer the same features as basic dc-to-dc converters, such as the buck function with continuous output current and the boost function with continuous input current, but both with zero average capacitor voltage
igu off Transer function switch T is alternating on and off. Transfer function analysis is based on the capacitor C voltage ripple Δv_{c}, assuming constant .
解 each case, the average capacitor voltage is zero, since the capacitor is in a Kirchhoff voltage loop elated to the input and output currents. Thus as the load current decreases, the input current ripple decreases, whence the inductor currents decrease. As the energy transfer decreases, the capacitor ripple voltage (energy transfer) decreases, eventual reaching DCM, when the capacitor voltage has zero voltage periods.

Figure 20.6. Three dc-to-dc converters with zero average capacitor voltage: topologies, operating stages, and transfer functions.

Figure 20.6B shows the two states created by operation of the switch T , namely the current loops when the switch T is on, $t_{\text {on }}$ and when T is off, $t_{\text {off, }}$ (such that $t_{\text {on }}+t_{\text {off }}=T$). Energy transfer (voltage and current transfer function) analysis is based on the capacitor C voltage ripple Δv_{c}, specifically $C \times \Delta v_{c}=i_{c} d t$, (eqn 1 in figure 20.6), assuming constant current in the two circuit inductors L_{i} and L_{0} (large inductance). The three basic converter transfer functions result, viz., buck, boost, and buck-boost, which are only switch on-state duty cycle δ dependent, as shown by equations 2 and 3 in figure 20.6. The average input inductor L_{i} current is always equal to the average input current, while the average output inductor L_{o}
current is always equal to the average output current.

Circuit component average voltages and currents are given in Table 20.3. In practice, the average capacitor voltage depends on the voltage difference of the resistive voltage drops associated with the inductor windings. Although the two inductor resistive voltages counter each other, they only cancel to zero at specific conditions, including duty cycle
This near zero capacitor voltage can be exploited to create a transformer isolated version of the buckboost converter P5 by splitting the capacitor into series capacitors and inserting a shunt transformer, as is done with the transformer coupled Cuk converter (see section 20.7). But unlike the Cuk transformer coupled version, large dc decoupling capacitors are needed to minimise any core dc bias. The important coupled circuit feature is that energy is transfer by transformer action, with no energy temporarily stored in the core, as is the case with the basic isolated buck-boost topology. Therefore energy transfer is not limited by the magnitude of energy that can be stored in the core volume.
If the capacitance C is large, ac wise, for analysis purposes, the two inductors L_{i} and L_{o} are in parallel and each of the three P sequence converters effectively reduce (degenerate) to the corresponding basic converters in sequence A.

Table 20.3: DC-to-dc converter normalized component ratings

voltage				buck	boost	buck-boost
Figure 20.6 / cct				A (a)	A (b)	A (c)
topology				P1	P2	P5
transfer function	Voltage	TFv	V_{0} / E_{i}	δ	$\frac{1}{1-\delta}$	$\frac{-\delta}{1-\delta}$
	Current	TFi	I_{o} / I_{i}	1/8	1-ס	$\frac{1-\delta}{-\delta}$
Switch T	$\underset{\text { (ave) }}{\mathrm{T}}$	voltage	V_{T} / E_{i}	1-ס	1	1
		current	$I_{T} / I_{\text {o }}$	δ^{2}	δ^{2}	$\frac{\delta}{1-\delta}$
	$\underset{(\max)}{\top}$	voltage	V_{T} / E_{i}	1	$\frac{1}{1-\delta}$	$\frac{1}{1-\delta}$
		current	I_{T} / I_{o}	1	$\frac{1}{1-\delta}$	$\frac{1}{1-\delta}$
Diode D	$\underset{\text { (ave) }}{\mathrm{D}}$	voltage	V_{D} / E_{i}	δ	$\frac{\delta}{1-\delta}$	$\frac{\delta}{1-\delta}$
		current	I_{D} / I_{0}	$\delta(1-\delta)$	1	1
	$\underset{(\max)}{\mathrm{D}}$	voltage	V_{D} / E_{i}	1	$\frac{1}{1-\delta}$	$\frac{1}{1-\delta}$
		current	I_{D} / I_{o}	1	$\frac{1}{1-\delta}$	$\frac{1}{1-\delta}$
Capacitor C	current	$t_{\text {on }}$	I_{C} / I_{o}	1-ס	1	1
		r - $t_{\text {on }}$	$I_{C} / I_{\text {o }}$	δ	δ	$\frac{\delta}{1-\delta}$
	voltage	average	V_{C} / E_{i}	0	0	0
		ripple	$C \Delta v_{c} / T I_{o}$ $C \Delta v_{C} / I_{i}$	$\begin{gathered} \delta(1-\delta) \\ 1-\delta \end{gathered}$	$\begin{gathered} \delta \\ \delta(1-\delta) \end{gathered}$	$\begin{gathered} \delta \\ 1-\delta \end{gathered}$
Inductor current IL	average current	Li	$\begin{gathered} I_{L i} / I_{o} \\ I_{L i} / I_{i} \end{gathered}$	δ	$\frac{\delta}{1-\delta}$	$\frac{\delta}{1-\delta}$
		Lo	$\begin{gathered} I_{L o} / I_{o} \\ I_{L o} / I_{i} \end{gathered}$	$\begin{aligned} & 1-\delta \\ & \frac{1-\delta}{\delta} \end{aligned}$	$\begin{gathered} 1 \\ 1-\delta \end{gathered}$	$\begin{gathered} 1 \\ \frac{1-\delta}{\delta} \end{gathered}$
	Δ inductor voltages	$V_{L i}-V_{L O}$	$\frac{I_{L i}-I_{L 0}}{I_{i}}$	$\frac{2 \delta-1}{\delta}$	$2 \delta-1$	$\frac{2 \delta-1}{\delta}$
	$\begin{gathered} \text { dc } \\ \text { losses } \end{gathered}$	$\mathrm{Li}^{+}+\mathrm{L}^{\circ}$	$\frac{I_{L}^{2}+I_{L o}^{2}}{I_{i}^{2}}$	$\frac{2 \delta^{2}-2 \delta+1}{\delta^{2}}$	$2 \delta^{2}-2 \delta+1$	$\frac{2 \delta^{2}-2 \delta+1}{\delta^{2}}$
	ripple current	L_{i}	$L_{i} \Delta I_{L i} / T E_{i}$	$\delta(1-\delta)$	δ	δ
		Lo	$L_{0} \Delta I_{L o} / T E_{i}$	$\delta(1-\delta)$	δ	$\approx \delta$
input/output ripple current	input	I_{i}	$L_{i} \Delta I_{i}$	$\begin{gathered} \text { Discontinuous } \\ 0, I_{o} \end{gathered}$	Continuous $2 \delta \tau E_{i}$	$\begin{aligned} & \text { Discontinuous } \\ & 0, I_{o} /(1-\delta) \end{aligned}$
	output	into $\mathrm{C}_{0} / / \mathrm{R}$	$L_{0} \Delta I_{\text {o }}$	$\begin{aligned} & \text { Continuous } \\ & 2(1-\delta)_{I} V_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Discontinuous } \\ & 0, I_{o} /(1-\delta) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Discontinuous } \\ & 0, I_{o} /(1-\delta) \end{aligned}$

20.6.1 Converter component ratings

Converters with continuous input and output current (continuous power)

Of the three basic voltage-sourced dc-to-dc converters (buck A1, boost A2, and buck-boost A5) shown in the three parts of figure 20.7A, only the boost converter, figure 20.7A-b, offers continuous input current, but with a voltage sourcing output. Many renewable interfacing stages employ this topology or an energy conversion stage based on its functionality concept, or atternatively resort to a converter large input sourced duals, as shown in figure 20.7B. Both converter source types (current and voltage) have the same transfer function, relating the input voltage E_{i} and current I_{i} to the output voltage V_{o} and current I_{c} based on a lossless converter, that is, power conservation gives $E_{i} \times I_{i}=V_{0} \times I_{0}$. In the dc voltage source case, the input current for energy conservation is the average input current, whilst in the dc current source case, the input voltage for energy conservation is the average input voltage.
Analysis to derive the current transfer function, $f_{i}(\delta)=I_{o} / I_{i}$, of the current-sourced converters in figure 20.7B, is based on the capacitor C charge Ixt over one cycle, τ, under steady-state switch on-state duty cycle, δ, and input/output conditions. The average capacitor current Ji.dt is zero if the instantaneous dc bias voltage. The switch T and diode D on/off energy transfer paths (whence transfer function) are summarized in the three parts of figure 20.7C. The capacitor C is referred to as the controlling element in the sense that its ripple voltage magnitude Δv_{c}, controls the energy transfer magnitude; whilst the switch T induced capacitor current duty cycle specifies the energy transfer rate, hence current (whence voltage) transfer function. Because the transfer function is based on dc circuit conditions and the energy transfe an ac function, any of or combination of the reactive components, the input inductance Li , the outpu inductance L_{0}, and C , can be controlling elements. That is, irrespective of the inductor ac voltage wave shape, in a steady-state inductor CCM, the dc current at the beginning of a cycle period is the same as at means any reactive. Tmponent can be used to track any desired input current reference or profile.

Continuous current alone from an energy source is insufficient to ensure continuous power from that source. Short-circuiting a current source means zero delivered power, although the source remain unctional current wise. Depending on the topology, an electromagnetic alternative is to temporarily tored the source energy in a shunt capacitor (for a current source) or a series inductor (in the case of voltage source). A PV cell exhibits both current and voltage source property, in which case either or both eactive component types can be used to temporarily store energy.
he controlling element, that is the element experiencing the ripple associated with ac energy being ransferred from the input to the output, is the capacitor C . The capacitor voltage ripple Δv_{c}, is given by eqn 1 in figure 20.7 and is dependent on the load current magnitude. But if the input inductance Li_{i} is low such that it experiences a significant current ripple, then the transfer function becomes dependent on both L_{i} and C , whence the input current can vary so as to track the current profile necessary to follow the energy source operational maximum power point. One of the two energy transfer stages (T on, period ton or T off, period τ-ton, with CCM) in figure 20.7C remains dependent only on C , while the other stage will be fransfer function, so both stably contribute to the energy being transferred at the same transfer function evel. Alternatively, if C is increased to experience minimal ripple, operational properties are dependen on Li , as in basic voltage source dc-to-dc converter analysis. Any input current profile can be tracked, with a response related to the inverse of the input inductance, L_{i}
Although circuit topologies E in figure 20.7 have no inductor at the input, as with the other topologies in figure 20.7, the input current is continuous. This transferable continuous current property is readily erminals x, y, and z must be zero. Therefore if the currents at any two terminals are continuous, then the current must be continuous (or continuously zero) at the third terminal. All the topologies in figure 20.7 have inductance at two of the three terminal, hence current can be continuous at the third terminal.
The topologies in figure 20.7E (and figure 20.7F) indicate an output voltage sourcing mode by the addition of the output filter capacitor C_{o}. For a current-source output, the presence of L_{o} allows C_{0} to be removed. Similarly, adding the same load shunt capacitance C_{0} across R in the topologies in figure menable to stable parallel connection, while voltage sourcing outputs are applicable to stable series connection

Based on the transfer function $V_{o} / E_{i}=I_{i} I_{o}$, component average voltages and currents can be normalized with respect to the input voltage E_{i} and output current, I_{o}, (or V_{o} and $=I_{i}$) as appropriate. The average inductor voltage and average capacitor current are both zero in steady state, so in conjunction with Kirchhoff's laws, the various component dc voltages and currents in tables 20.4 and 20.5 can be duty cycle, δ.
For a given transfer function, independent of topology, the switch and diode average voltages and currents are the same, as are the capacitor dc and ripple voltages, provided the inductor ripple currents are minimal. Given the capacitor ripple voltage is the same, as is the dc offset, the maximum load resistance, specifically critical resistance, is the same for a given transfer function independent of opology, as summarized in Table 20.4. Transposition of the inductors in the different topologies, for a given transfer function, results in different inductor average currents (and ripple), as shown in Table 20.5. When capacitor voltage ripple dominates (large inductances for L_{i}, and L_{0}), the component peak currents are similar to their average currents but the peak voltages can significantly differ from component similar to the average current implies minimal input and output current ripple
The converse is applicable when inductor ripple current dominates, with large C hence minimal ripple voltage. The capacitor peak voltages are similar to their average voltages but the peak currents can significantly differ from capacitor average currents within the switch T on and off periods.
Each converter design is the same as for its generic converter since each topology with the same ransfer function, has the same component ratings, stresses, and maximum resistance for CCM, as shown in Table 20.4. The inductors are dimensioned to produce the required ripple currents and/or $I^{2} R$ osses, according to Table 20.5

The performance factors of efficiency, voltage and current regulation, and current ripple are strongly related to converter transfer function. With reference to tables 20.4 and 20.5:
i. Efficiency: Boost converters have the highest efficiency because for a given power they have the lowest output current hence lowest diode on-state voltage and copper $I^{2} \mathrm{R}$ losses, whilst the buck converter has the highest output current whence the highest diode conduction voltage and $I^{2} \mathrm{R}$ losses. onverters where inductor current comprises the input and output current have the highest $I^{2} \mathrm{R}$ losses, The copper losses of conve the same converter, but with power drawn from the other port. That is, the ${ }^{2}{ }^{2} \mathrm{R}$ loss function of D5 is the same as D2 (2 , $\boldsymbol{\delta}^{2}$)/(1- δ^{2})fom Table 20.4 since they are the same converter but with power drawn from complementary output ports P_{\circ} and P_{1}. On this basis the overall efficiency of the converter pairs would be expected to be the same
i. Voltage and current regulation: Similarly for output voltage regulation; the buck converter has the lowest output voltage (and increased output current), whence the diode voltage which is the largest of converters should employ silicon Schottky diodes. Mitigating the poor output voltage regulation of the buck converter, it has the best current regulation, with the boost converter having the poorest current regulation at low current. That is, in open loop, the buck converter is best for accurately tracking the current transfer ratio, (with an efficiency sacrifice), which is a fundamental control aspect of current source input and output converters. Generally good current regulation is expected because the current transfer function is independent of input and output voltages, which are effectively reduced due to series component voltage drops, thus affect voltage regulation.
ii. Ripple current: Also because of the higher circuit voltages, the boost converter tends to have the highest ripple current, whilst the buck converters have the lowest voltages, hence the lowest ripple tend to have a lower ripple wurrent Constant input ripplecurrent for a given δ, occurs when an inductor experiences only the input voltage, otherwise ripple current is regulation and/or capacitor voltage ripple dependent. Converters with significant ripple current increase at higher currents, have a capacitor voltage swing which tends to become exponentially shaped, which affects open loop regulation.

Generally the boost converter is used when continuous source current is required, without the use of energy source decoupling capacitance. It is therefore commonly interfaced to renewable sources. The disadvantage of the boost converter is that the controlled output voltage is always greater than the input controlled voltage down to zero, but with voltage polarity inversion. Nevertheless the buck-boost topologies offer an alternative first stage for PV and fuel cell applications. The buck converters, in a reversible form, may be viable in battery dc link backup systems of grid connected PV and fuel cell applications.

Table 20.4: DC-to-dc converter normalized component ratings

Figure 20.7. DC-to-dc current-sourced and voltage-sourced topologies, operating stages, and conversions.

	$\begin{aligned} & \text { 지 } \\ & \text { 음 } \\ & \hline \end{aligned}$	Voltage transfer function TFv V_{o} / E_{i}	Criticalloadresistance	Switch T (ave)		Diode D (ave)		Capacitor C					
						current	voltage						
				voltage	current			voltage	current	$t_{\text {on }}$	T - $t_{\text {on }}$	average	ripple
				V_{T} / E_{i}	I_{T} / I_{0}	V_{D} / E_{i}	I_{D} / I_{0}	I_{C} / I_{0}	I_{C} / I_{0}	V_{C} / E_{i}	$C \Delta v_{C} / T I_{0}$		
$\begin{aligned} & \hline \mathrm{D}-\mathrm{a} \\ & \mathrm{E}-\mathrm{a} \\ & \mathrm{~F}-\mathrm{c} \end{aligned}$	$\begin{aligned} & \hline \text { D6 } \\ & \text { D4 } \\ & \text { C1 } \\ & \hline \end{aligned}$	δ	$\delta(1-\delta)$	$1-\delta$	δ	δ	$1-\delta$	$1-\delta$	δ	1	$\delta(1-\delta)$		
$\begin{aligned} & \hline \text { D-b } \\ & \text { E-c } \\ & \text { F-a } \end{aligned}$	$\begin{aligned} & \hline \text { D5 } \\ & \text { C2 } \\ & \text { D3 } \\ & \hline \end{aligned}$	$\frac{1}{1-\delta}$		1	$\frac{\delta}{1-\delta}$	$\frac{\delta}{1-\delta}$	1	1	$\frac{\delta}{1-\delta}$	$\frac{1}{1-\delta}$	δ		
$\begin{aligned} & \hline \text { D-c } \\ & \mathrm{E}-\mathrm{b} \\ & \mathrm{~F}-\mathrm{b} \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} 5 \\ & \mathrm{D} 2 \\ & \mathrm{D} 1 \\ & \hline \end{aligned}$	$\frac{-\delta}{1-\delta}$											

Ratings for boost and buck-boost converters are the same since
seen in figure 20.8 (complementary outputs of the same topology)

Table 20.5: DC-to-dc converter normalized inductive component ratings

$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text { 이 } \\ & \stackrel{-}{\circ} \\ & \stackrel{0}{9} \end{aligned}$	Voltage transfer function TF_{v} V_{o} / E_{i}	Current transfer function TFi	Inductor average current		Total inductor Copper loss	Inductor Li Lo ripple current		Input/Output ripple current	
				Li^{\prime}	Lo		$\Delta L_{L i}$	$\Delta I_{\text {Lo }}$	ΔI_{i}	Lo/R»
			I_{i} / I_{o}	$I_{L i} / I_{o}$	$I_{\text {Lo }} / I_{o}$	$\left(I_{u}^{2}+I_{\iota o}^{2}\right) / I_{o}^{2}$	$L_{i} \Delta I_{L i} / T$	$L_{0} \Delta I_{L 0} / T$	$L_{i} \Delta I_{i} / \tau$	$L_{0} \Delta I_{0} / T$
$\begin{array}{\|c\|} \hline \mathrm{Cct} \\ \mathrm{D}-\mathrm{a} \\ \hline \end{array}$	D6	δ	$1 / \delta$	δ	1	$\delta^{2}+1$	$1 / 2(1-\delta) \Delta V_{c}$	(1-ס)V。	$1 / 2(1-\delta) \Delta V_{c}$	(1-ס) V_{0}
$\begin{array}{\|c\|} \hline \text { Cct } \\ \mathrm{E}-\mathrm{a} \\ \hline \end{array}$	D4			1- δ	1	$\delta^{2}-2 \delta+2$	$1 / 2(1-\delta) \Delta V_{c}$	(1-ס) V_{0}	$\delta(1-\delta) E_{i}$	$(1-\delta) V_{0}$
$\begin{aligned} & \text { Cct } \\ & \text { F-c } \end{aligned}$	C1			δ	$1-\delta$	$\delta^{2}-2 \delta+1$	$\delta(1-\delta) E_{i}$	$(1-\delta) V_{0}$	$\delta(1-\delta) E_{i}$	ס $\delta^{\prime} \Sigma 1 / L$
$\left\lvert\, \begin{gathered} \mathrm{Cct} \\ \mathrm{D}-\mathrm{b} \end{gathered}\right.$	D5	$\frac{1}{1-\delta}$	$1-\delta$	$\frac{1}{1-\delta}$	1	$\left(2-\delta^{2}\right) /\left(1-\delta^{2}\right)$	δE_{i}	$1 / 4(1-\delta) \Delta V_{c}$	δE_{i}	$1 / 4(1-\delta) \Delta V_{c}$
$\begin{array}{\|l\|l\|} \hline \text { Cct } \\ \text { E-c } \\ \hline \end{array}$	C2			$\frac{\delta}{1-\delta}$	1	$1 /\left(1-\delta^{2}\right)$	δE_{i}	(1-ס)V。	ס $51 / L$	(1-ס) Vo
$\begin{array}{\|c\|} \hline \text { Cct } \\ \mathrm{F}-\mathrm{a} \\ \hline \end{array}$	D3			$\frac{1}{1-\delta}$	$\frac{\delta}{1-\delta}$	$\left(1+\delta^{2}\right) /\left(1-\delta^{2}\right)$	δE_{i}	$1 / 4(1-\delta) \Delta V_{c}$	δE_{i}	(1-ס) Vo
$\begin{aligned} & \text { Cct } \\ & \mathrm{D}-\mathrm{c} \\ & \hline \end{aligned}$	C5	$\frac{-\delta}{1-\delta}$	$\frac{1-\delta}{-\delta}$	$\frac{\delta}{1-\delta}$	1	$1 /\left(1-\delta^{2}\right)$	δE_{i}	(1-ס) V_{0}	δE_{i}	(1-ס) Vo
$\begin{aligned} & \text { Cct } \\ & \mathrm{E}-\mathrm{b} \\ & \hline \end{aligned}$	D2			$\frac{1}{1-\delta}$	1	$\left(2-\delta^{2}\right) /\left(1-\delta^{2}\right)$	δE_{i}			
$\begin{array}{\|c\|} \hline \text { Cct } \\ \text { F-b } \\ \hline \end{array}$	D1			$\frac{\delta}{1-\delta}$	$\frac{1}{1-\delta}$	$\left(1+\delta^{2}\right) /\left(1-\delta^{2}\right)$	$\delta E_{i} \Sigma L$	(1-ס) Vo	$\delta E_{i} \Sigma L$	(1-ס) Vo

Figure 20.8. Basic converter functional block shown as a three-port block with two outputs P_{o} and P_{1}

Figure 20.9. Gain loss at high duty cycles due to circuit parasitic resistance/loss elements
Converter gain factors above 4 to 5 for boost and buck boost converters are practically challenging, due to circuit loss elements, as illustrated in figure 20.9. Converter transformer coupling for voltage matching lleviates this problem, particularly for buck boost type dc to dc converters
Chapter 19 , figure 1922 and better semiconductor utilization, but the limitation is energy is temporarily stored in the matching and core. Thus for a given magnetic material, maximum energy transfer is limited by core volume, viz. $1 / 2 B H \times$ Volume. This is the case not only for the buck-boost converter but also the inductor coupled versions of the sepic and zeta converters, as in figure 20.10. All smps inductive components must be able to operate with a current (flux) bias, but when coupled windings are used, the windings must be closely coupled, meaning air gap energy storage cannot be exploited.

(a)

Figure 20.10. Inductor coupled circuit magnetizing dc bias current of (a) sepic and (b) zeta converters.
The core volume is utilized differently (better) if magnetic energy transfer is through transformer action rather than intermediate energy storage. If energy is transferred from the source to the load solely via the ripple current through a series capacitor, as with buck-boost converters C5, C6, G5 and P5, then that capacitor can be split so as to facilitate an interposed high magnetizing inductance transformer as shown in figure 20.11 and Table 20.6. A series capacitor blocks dc, so the ac circuit can be transformer coupled as shown in figure 20.11b. The table shows that the Cuk, sepic, zeta, and new buck-boost converters, all with a buck-boost magnitude transfer function, fulfil the series energy transfer capacitor requirement. The transformer acts in a current controlled mode where the voltages and currents adjusts to meet the transformer equation ($I_{\text {in }} / I_{\text {out }}=V_{\text {out }} / V_{\text {in }}=N_{\text {out }} / N_{\text {in }}$) but simultaneously through the input current, the converter current/voltage transfer function ($\left.I_{i} I_{o}=V_{o} / E_{i}=|\delta / 1-\delta|\right)$ is enforced since both equations must comply with energy conservation. This operation is not to be confused with the problematic so called verge of coupled circuit and transformer operation'. In the Cuk, sepic and zeta cases the series split capacitor pair must fulfil the important function of blocking and supporting a dc component from the
magnetic coupling circuit．Table 20.6 shows the dc component each of the split capacitors must block， which is independent of capacitance．Whereas the Cuk converter experiences a dc component on both windings（ E_{i} and V_{0} ），the sepic $\left(E_{i}\right)$ and zeta（ V_{0} ）only experience dc voltage on one winding（secondary and primary respectively）．The dc component is catered for，blocked，by using large capacitance．The new buck－boost converter P5 develops no dc component on the primary or the secondary，because each is in parallel with inductance，which as for the zeta primary and sepic secondary，has zero average voltage．Large capacitance is therefore not necessary．In practice，any dc voltage bias is modified （increased or decreased）due to component voltage drops，including inductor and transformer winding resistance associated voltages．

Figure 20．11．$A C$ equivalent circuits．

The capacitance technically is not split，not halved or doubled for a $1: 1$ turns ratio transformer．The capacitor on the secondary emulates the primary capacitor，ac wise，via the transformer．

The energy transferred is independent of the transformer turns ratio and the capacitance magnitude，and is the load power $V_{o} I_{o}$（and input power $E_{i} I_{i}$ ）over the switching cycle period τ ，which must equate to change in Since the capacitor on the zero average－voltage－side does not need significant dc blocking capability，the capacitance is dimens based on any circuit instantaneous voltage restrictions（as pposed to average voltage values）．
解颠 Cuk converter，where the input side capacitor is bias by E_{i} and the output side capacitor voltage bias is V_{0} ．The capacitor voltage stressing in the uncoupled Cuk is associated with a bias voltage of $E_{i}+\left|V_{o}\right|$ ． Because of the isolated coupling，the output voltage can be either polarity，with respect to the input，so all the topologies in Table 20.6 have the same buck－boost transfer function
With capacitor coupling，each capacitor has a dc bias（a stored electrical energy bias）and operation relies on zero average capacitor current（otherwise the capacitor will over－volt）．With inductor coupling， as in figure 20．10，the inductor has a dc bias current（a stored magnetic energy bias）and operation relies on zero average inductor voltage（otherwise the core will saturate）．Without coupling the inductor can utilise an optimised air gap to store energy，but if used in a coupled mode，any air gap adversely ecreases the coupling factor and increases leakage
Observe that transformer action involves a series capacitor transferring energy between the converter input and output，while inductor coupling action involves modification to a shunt inductor．Figure 20.12 hows two buck－boost topologies（frum inductor，without any other path between the input and output

Like the Cuk buck－boost converter，these two buck－boost converters have continuous input and output currents．The only redeeming feature of these two complex topologies，over the same function with an solated Cuk converter，is that the input or output current ripple is less than with the same components in a Cuk converter．The core operates in both transformer and storage coupled circuit modes．
This coupling circuit concept for isolation，can be applied to some of the tapped inductor topologies in section 20．10，specifically（like T3＋and T3－），buck－boost topologies S3士 and S3－

20．8 Capacitor ripple voltage

Output capacitor ripple voltage for the basic converters was considered in chapter 19．Two main components that specify the ripple are the output capacitor equivalent series resistance voltage and the voltage change due to charging and discharging within the switching period，where discontinuous The charge change，whence voltage change in a capacitor is given by

$$
\Delta v_{c}=\frac{\Delta Q}{C}=\frac{\int i \Delta t}{C}
$$

Generally two capacitor charge state regimes occur depending on if the capacitor provides the full load current for any period，or not．

Case I

Figure 20．13a shows the typical capacitor charge regime for the buck，forward，Cuk，and zeta converters． Analysis is based on charge balance，that is，the output capacitor operates with a steady state dc voltage，with a constant load condition．Thus the hatched area（charge）above the average output current $=V / R$ must equal the（charge）area below I ．

$\delta_{1}{ }^{\top}$
$\mathrm{S}_{2} \mathrm{~T}$
$\delta_{3} T$
Figure 20．13．Case I capacitor current waveforms．

For continuous conduction
while for discontinuous conduction

$$
\Delta Q=1 / 4 \tau\left(I_{o}-I_{1}\right)
$$

（20．1）

$$
\text { where } I_{o}=1 / 2\left(\delta_{1}+\delta_{2}\right)\left(I_{1}+I_{2}\right)
$$

Figure 20.14 shows the four typical capacitor charge regime for the boost，buck－boost and sepic converters，where output current only flows from the capacitor when the diode does not conducts．

For continuous conduction $I_{1} \geq I_{o}$（a and b when $I_{1}=I_{o}=V_{o} / R$ ）

$$
\begin{equation*}
\Delta Q=I_{o} \delta \tau \quad \Delta V=\frac{1}{C} \frac{V_{o}}{R} \delta \tau \tag{20.3}
\end{equation*}
$$

On the conduction boundary in（c），$\delta_{1}+\delta_{2}=1$ and $I_{1}=0$

$$
\begin{equation*}
\Delta Q=1 / 2 t_{2}\left(I_{o}-I_{1}\right) \text { where } t_{2}=\delta_{2} \tau\left(1-1 / 2 \delta_{2}\right) \tag{20.4}
\end{equation*}
$$

while for discontinuous conduction figure 20．14d，$\delta_{1}+\delta_{2}<1$

$$
\begin{equation*}
\Delta Q=1 / 4 \frac{\tau I_{o}}{\left(2-\delta_{2}\right)^{2}} \tag{20.5}
\end{equation*}
$$

(a)

(b)
(c)
igure 20.14. Case II capacitor current waveform

Current-Doubler Rectifier

Section 19.9 considered transformer isolated smps with full wave rectifier output stages involving a centre tapped transformer secondary, as shown in figure 20.15

Figure 20.15. Transformer centre-tapped secondary full-wave rectifier.

The current-doubler rectifier in figure 20.16a is an alternative rectification method which offers a simple structure and better secondary utilization of the isolation transformers in push-pull, half-bridge and bridge are produced on the transformer secondary side. The current doubler rectifier is composed of one transformer secondary winding, which is not centre tapped, two rectifier diodes, two identical filter inductors and an output capacitor, as shown in figure 20.16a.

Where as with centre-tapped windings each has a 50% duty cycle at half the total secondary voltage, the Where as with centre-tapped windings each has a 50% duty cycle at half the total secondary voltage, the
current doubler winding has double the duty cycle at the total secondary voltage level. The net effect is he current doubler secondary winding carries half the current of the tapped configuration windings.
(a)

(b)

Figure 20.16. Secondary winding current doubler rectifier: (a) circuit and (b) waveforms.

With reference to figure 20.16b waveforms, current double operation of figure 20.16a is as follows:

Interval 1:- When the voltage across the transformer secondary winding, $V_{\text {SEC }}$ is positive, current flows in the positive direction in both filter inductors, L_{1} and L_{2}, as shown in figure 20.16b. During this period D1 is orward biased while D_{2} is biased off by $V_{S E C}$ and the current in L_{1} charges the output capacitor C_{o} through D_{1}; a path not involving the transformer secondary winding. The current in inductor L_{2} flows through the transformer winding and D_{1} into the output capacitor. Hence the output current is the sum of he load current. During this period, the voltage across L_{1} is negative and equal to the output voltage, causing the current in L_{1} to decrease. $V_{L 2}$ across L_{2} is positive, forcing the current in L_{2} to increase.
nterval 2:- During the primary circuit freewheeling period, no voltage is induced across the secondary winding, $V_{S E C}=0$. The voltage across $L_{2}, V_{L 2}$ becomes negative, and equal to the output voltage magnitude, producing a negative slope in the current $I_{L 2}$. Because of transformer leakage, $I_{L 2}$ continuous through the secondary, rather than through D_{2}. The conditions for L_{1} do not change.
Interval 3:- With a negative voltage across the transformer output, D_{1} turns off while D_{2} becomes forward biased. The secondary current rapidly changes direction, being forced to equal the current in L_{1}. The ductance and the output voltage. With V_{L} positive across L, current starts building up in L .

Interval 4:- With $V_{S E C}=0,-V_{o}$ is impressed across L_{1} causing its current to decrease and there is no change in the condition of L_{2}

The characteristics of the current-doubler rectifier are:

- primary side operation, including duty cycle, is unchanged
- no transformer center-tap, so simpler structure - but same total number of secondary turn
- transformer secondary carries approximately half of the output curren
- diode and output capacitor stresses are identical to the full-wave technique
- additional filter inductor required
- each filter inductor carries only half the dc output current, hence quarter the $I^{2} R$ loss/inductor
- ripple currents cancel in output capacitor C.
- current-mode control to ensure equal inductor currents

20.10 Tapped inductor operation

By tapping the converter inductor, different variations of the basic converters can be realised, as shown figure 20.17. The tapping point can be referenced with respect to the diode, switch or input/outpu erminals, with the resultant transfer function shown in Table 20.7, where tap turns ratio is defined by $N=n_{1} / n_{1}+n_{2}$ when the windings are cumulatively connected and $N=n_{1} / n_{1}-n_{2}$ if $n_{1}<n_{2}$ when differentially
connected. The complete permutation of possibilities is shown in figure 20.18.

The resultant characteristics, with respect to the basic converters, can be summarised as follows
The switch tap versions give higher conversion magnitudes than the basic converters
The diode tap versions give lower conversion magnitudes than the basic converters.
The rail tap versions give both higher and lower conversion magnitudes than the basic converters
Thus it is possible to increase the gain in order to obtain higher output voltage magnitudes. As with any single ended coupled circuit, semiconductor over-voltage, due to leakage stored energy, is a problem.

(a)

(c)

$$
\xrightarrow[\substack{-\frac{\delta}{1-\delta} \times N \\ N=\frac{n_{1}}{n_{1}-n_{2}}}]{\substack{A_{i} \\ E_{i} \\ n_{2} \\ n_{1} \\ n_{1}}}
$$

(d)

(b)

(f)

(e)

(g)

(h)

Figure 20.17. Tapped inductor seeding buck-boost converters (a) terminal inductor tap connection converter T3+, (b) differentially connected inductor tap converter T3-, (c) diode connected, cumulative inductor tap converter S3, (d) diode connected, differentially inductor tap conver
and $(e),(f),(g)$, and (h) positive rail reference versions of $(a),(b),(c)$ and (d).

Different viable seeding topologies (those shown in figure 20.17) can generate other sequences of different viable converter topologies, by repeated flipping (output becomes the second output port) and inverse operations (interchange the input and output ports), eventually cycling back to the original topology as shown in Table 20.7. The two flip/inverse sequencing processes are summarized mathematically as follows:
i. The flipped transfer function is unity minus the transfer function.
ii The transfer function for inverse operation can also be defined mathematically. The inverse transfer function is derived by interchanging δ and δ,', then invert the function. Interchanging the onstate and off-state duty cycles reflects the switch and diode interchange, while inverting reflects the reversing of the input and output ports of the converter (that is V_{o} / E_{i} becomes E_{i} / V_{o}). This mathematical transformation is applicable to inductor tapped circuits, provided the tap connected cell derivation assumes a Tee cell arrangement. The inductor tap connected to an external cell dc voltage bias (not the common input to output reference, 0 V) inhibits internal cell element rotation, and this restriction is accounted for by interchanging N and N^{\prime}, in addition to δ and δ ', before inverting the function to give the inverse transfer function. The inversion process is not necessarily commutative if asymptotes exist in the transfer function.

The significance of these two sequencing processes is that topologies and transfer functions can be determined mathematically without recourse to circuit analysis.

Flipping a topology may results in a configuration requiring interchange of D and S , whence δ and δ are also interchanged (effectively necessitating two switch/diode pairs, which guarantees CCM). Such interchanging of the switch and diode in any sequence is always avoided if a pair of bidirectional switches are employed.
The columns in figure 20.18 shows numerous inductor tapped topologies and their vertical sequence flip/inverse order, while Table 20.7 shows the corresponding voltage transfer functions (assuming ideal
components) and the associated sequence order, for five sequence groups. All previous publications have assumed the tapped inductor is cumulatively winding connected which gives two major classes of topologies (viz., columns headed $\mathrm{S}_{\text {cum }}$ and $\mathrm{T}_{\text {cum }}$ in figure 20.18). Here topologies are incorporated into a general matrix of topologies and transfer functions, with two mirroring classes when the tapped inductor windings are differentially connected (viz., columns $\mathrm{S}_{\text {dif }}$ and $\mathrm{T}_{\text {diff }}$ in figure 20.18).

The critical load resistance, defining the CCM-DCM boundary, for each of the three $T_{\text {diff }}$ (and five $T_{\text {cum }}$)
topologies, in terms of the voltage transfer function, $T F$, is given by the unified equation:

$$
\begin{equation*}
R_{\text {ocit }}=\left|T F_{v}\right| \times \frac{N^{\prime}}{N} \times \frac{2 L_{1}}{\delta \tau \delta^{\prime}} \text { where } \frac{L_{1}}{L_{2}} \alpha \frac{n_{1}^{2}}{n_{2}^{2}}=\left(\frac{N}{N^{\prime}}\right)^{2} \tag{6}
\end{equation*}
$$

Analysis assumes a losses circuit, where the output power is equal to the input power, $E_{i} l_{i}=V_{0} l_{0}$, whence impedance transfers in the ratio of the voltage transfer function TF, squared, $R_{o}=R_{i} \times T F^{2}$. The critical load resistance, defining the CCM-DCM boundary, for each of the Sdiff (and the six Scum) topologies, in terms of the voltage transfer function, $I F$, is given by

$$
\begin{equation*}
R_{\text {ocit }}=\left|T F_{v}\right| \times \frac{1}{N} \times \frac{2 L_{1}}{\delta \tau \delta^{\prime}} \text { where } \frac{L_{1}}{L_{2}} \alpha \frac{n_{1}^{2}}{n_{2}^{2}}=\left(\frac{N}{N^{\prime}}\right)^{2} \tag{7}
\end{equation*}
$$

Because some transfer functions have asymptotes, switch diode pairs, or even a pair of bidirectional (ideal) switches are needed if the full duty cycle range is

Figure 20.18. Tapped inductor converters.

Table 20.7: Voltage transfer functions of converters, including inductor tapped converters.

Table 20．8：Topology constraints and simplifications

sequence	number of topologies $\min /$ max	Switch／diode pairs p	$\begin{array}{\|c} \hline \text { Bidirectional } \\ \text { switches } \\ \text { b } \\ \hline \end{array}$	$\begin{gathered} \delta_{\text {asym }} \\ \text { asymptote } \\ \text { (1 switch } 1 \text { diode) } \end{gathered}$	$\begin{aligned} & \text { turns } \\ & \text { restriction } \end{aligned}$	Degenerate sequence
A	3／3	A1，A2，A3	－	none	not applicable	not applicable
Tcum	3／6	$\begin{aligned} & \text { T2+/T2p+ } \\ & \text { T3+/T3p+ } \\ & \hline \end{aligned}$	T1＋／T1b＋	$\begin{aligned} & <N,>N \\ & \text { none } \\ & \text { none } \end{aligned}$	$\begin{gathered} 0<N<1 \\ N \neq 1: n_{2} \neq 0 \\ N \neq 0: n_{1} \neq 0 \end{gathered}$	$\begin{gathered} N=1 / 2, n_{1}=n_{2} \Rightarrow \\ \text { G sequence } \\ \text { not } G \text { topology } \end{gathered}$
Tiff	3／3	$\begin{aligned} & \hline \text { T1- } \\ & \text { T2- } \\ & \text { T2 } \end{aligned}$	0	$\begin{aligned} & \hline \text { none } \\ & \text { none } \\ & \text { none } \\ & \hline \end{aligned}$	$\begin{gathered} 0<N<1 \\ n_{2} \text { and/or } n_{2} \\ \neq 0 \end{gathered}$	$\begin{gathered} N=1 / 2, n_{1}=n_{2} \Rightarrow \\ \text { A sequence } \\ \text { not A topology } \end{gathered}$
Scum	5／5	S1 \pm S \pm S3 \pm S3p \pm S4 \pm S5 \pm	0	none none none none none	$\underset{\substack{\text { cum and diff } \\ N>0}}{ }$	$N=1, n_{2}=0 \Rightarrow$ A sequence A topology
$S_{\text {diff }}$	5／10	$\begin{aligned} & \text { S2-IS2p- } \\ & \text { S3-/S3p- } \\ & \text { S4-IS4p- } \end{aligned}$	$\begin{aligned} & \text { S1-/S1b- } \\ & \text { S5-/S5b- } \end{aligned}$	$\begin{gathered} \delta<N /(N-1), \delta<1 /(N-1) \\ \delta>1 /(N-1), \delta>N /(N-1) \\ n \quad n e \\ \delta>N /(N-1), \delta>1 /(N-1) \\ \delta<1 /(N-1), \delta<N /(N-1) \end{gathered}$	$\begin{gathered} \text { diff } \\ N<0 \\ n_{1} \neq n_{2} \end{gathered}$	$\begin{gathered} N=-1, n_{1} / n_{2}=1 / 2 \Rightarrow \\ G \text { sequence } \\ N=1, n_{2}=0 \Rightarrow \\ \text { A sequence } \\ \text { A topology } \end{gathered}$

The transformer coupled topologies（namely Cuk，sepic and zeta topologies）in Table 20.6 can also be tapped inductor connected，with capacitor and winding possibilities as shown in Table 20．9．A myriad of opologies and transfer functions are generated by performing sequential flipping／inversion operations， when the windings are cumulatively and differentially connected．

Table 20．9：Other tapped inductor configurations

converter		Independent C	Independent C	Series i／p C	Series o／p C
Step up					
average dc voltage		$v_{x} \quad v_{y}$	$v_{x} \quad V_{y}$	$v_{x} \quad v_{y}$	$v_{x} \quad v_{y}$
C5	Cuk	$E_{i} \quad-V_{0}$	$E_{i} \quad-V_{0}$	$E_{i} \quad-V_{0}$	$E_{i} \quad-V_{0}$
G6	zeta	＋V。	＋V。	＋V。	＋V。
G5	sepic	E_{i}	E_{i}	E_{i}	E_{i}
P5	new				0 0
Capacitor dc offset bias		$V_{c p} \quad V_{c s}$			
C5	Cuk	$E_{i} \quad-V_{0}$	$E_{i} \quad-V_{0}$	$E_{i}+V_{0}-V_{0}$	$E_{i} \quad-V_{0}-E_{i}$
G6	zeta	V_{0}	V 。	$E_{i} \quad V_{0}$	V。
G5	sepic	E_{i}	E_{i}	E_{i}	$E_{i} \quad E_{i}$
P5	new	0 0	0 0	00	0
Step down					

20．10i Reversible tapped inductor smps

The twenty－four tapped inductor converters in figure 20.18 are reversible if two switch／diode pairs are employed，as shown in the buck－boost bidirectional converters（BDCs）on the left in figure 20．19．The switch／diode combination need not be parallel connected，as in the circuits on the right．Generally，either or both diode／switch pairs can be separated，although some of the generated topologies may require the use of RBIGBTs and／or SCRs．

differentially－connected coupled－circuit buck－boost BDCs， $\mathbf{S}_{\text {diff }}$					
forward buck－boost		inverse：buck－boost switch／diode pairs		inverse：buck－boost 2 switches +2 diodes	
$\begin{array}{\|c\|} \hline \text { S3- } \\ \text { diode } \\ \text { tap } \end{array}$	$\frac{\delta}{1-\delta} \times N$		S3p－ switch tap $\frac{\delta}{1-\delta} \times \frac{1}{N}$		S3－ diode tap $\frac{\delta}{1-\delta} \times N$
S3－\rightarrow		S3－\rightleftarrows S3p－	\leftarrow S3p－	S3－\rightleftarrows S3－	\leftarrow S3－
$\begin{gathered} \text { S3p- } \\ \text { switch } \\ \text { tap } \end{gathered}$	$\frac{\delta}{1-\delta} \times \frac{1}{N}$		S3－ diode tap $-\frac{\delta}{1-\delta} \times N$		S3p－ switch tap $\frac{\delta}{1-\delta} \times \frac{1}{N}$
S3p－\rightarrow		S3p－\rightleftarrows S3－	\leftarrow S3－	S3p－\rightleftarrows S3p－	\leftarrow S3p－

Figure 20．19．Switch／diode connected，differentially－formed tap，S2／S4 buck－boost BDCs．

A feature of splitting the diode／switch pair is the generation of unusual forward and reverse transfer unction pairs．Consider the bottom right bidirectional buck converter in figure 20．19．The input and output voltage polarity is the same，with respect to the zero reference．Also the voltage transfer function is the same in both directions，namely

$$
\begin{equation*}
\frac{\delta}{1-\delta} \times \frac{1}{N} \tag{20.8}
\end{equation*}
$$

20．10ii Coupled circuit leakage inductance

Magnetically coupled circuits，in single ended topologies suffer from stress energy associated with leakage inductance．Release of leakage energy usually manifests itself as an over voltage on semiconductor devices．At lower power，dissipative clam
The diode－tap use an asymmetrical bridge configuration． stresses the switch S at switch turn－off．A convention clamp is ineffective because at switch turn－off， theoretically the switch experiences the supply voltage E_{i} plus the voltage induce across n_{2} because of conditions on $n 1, V_{0} n_{2} / n_{1}$ ．The leakage energy creates of voltage in excess of $E_{i}+V_{0} n_{2} / n_{1}$ ．Thus clamping the stressed device to the voltage rail E_{i} would undesirably load the coupled circuit winding n_{2} ．

（a）

（b）

[^0]asymmetrical bridge in figure 20.20b, the topology is energised trough the two bridge switches, hen leakage energy reset occurs through the two bridge diodes, back into the dc rail. The voltage eleasing the leakage energy is $E_{i}-V_{0} n_{2} / n_{1}$, while the two switch off-state voltages are constrained to within dc voltage rails. The two switches must be both on or both off, simultaneously. Phase shifting leg signals by 180° to reduce the switching losses is not possible. In creating alternating 0 V loops, the winding n_{2} induced voltage $V_{o} n_{2} / n_{1}$ would be short circuited. The penalties incurred are two additiona diodes, one switch and its gate drive, plus the input and output voltage no longer share a common dc rere input) being sourced through the two bridge diodes.

20.11 HV referenced dc to dc converter

Derivation of low voltage dc supplies from sources greater than a hundred volts can be inefficient, particularly at over 1 kV . The extremely low duty cycle requirement implies the need of transformer matching. At 10 kV , as with submarine cables, a Zener diode plus resistor approach offers low efficiency, below 1%, so such an approach is limited to a start-up function. The availability of a normally-on SiC $1200 \mathrm{~V} 45 \mathrm{~m} \Omega \mathrm{JFET}$ means series smps circuits, based on current source topologies can be employed as JFET T, current is diverted to the bulk storage capacitor C , which is maintained charged in a burst mode Start-up energy is sourced by the Zener diode-resistor across the high voltage supply, which is deactivated once C has charged. The deactivation function is achieved with a normally-closed contact of a high voltage relay (see Chapter 33 , Table 33.14 for a 70 kV , 10A dc relay).

Figure 20.21. HV referenced low-voltage dc to dc converter

20.12 Current sourced dc to dc converter

Three multiple switch current sourced converters are shown in figure 20.22. Such multiple switch current sourced dc to dc voltage converters are characterised by switch overlap operation, so as to always provide a current path for the current source.

Current source converter boost Text figure number	TF $\frac{V_{\text {out }}}{E_{\text {in }}}=\frac{I_{\text {in }}}{I_{\text {out }}}=$	i / p \& o/p capacitance $\begin{gathered} \Delta v_{\text {Cin }} C_{\text {in }}=Q_{\text {Cin }} \\ \Delta v_{\text {Cin }} C_{\text {out }}=i_{\text {Cout }} \Delta t \end{gathered}$	$\begin{gathered} \text { inductance } \\ \Delta i_{L_{1}} L_{i}=v_{L i} \Delta t \\ \Delta \text { is } \mathrm{p}-\mathrm{p} \end{gathered}$	semiconductor utilisation factor $u_{f}=\frac{P_{\text {rated }}}{\sum_{\hookleftarrow i} V_{\max } I_{r m s}}$
Half bridge $\begin{aligned} & L_{1}=L_{2} \\ & 1: N \end{aligned}$ Fig 20.22b	$\begin{gathered} \frac{1}{1-\delta} N \\ \delta>1 / 2 \end{gathered}$	$\begin{aligned} & \frac{1}{16} \frac{\Delta i_{L 1}(2 \delta-1) \tau}{\delta} \\ & I_{\text {out }}(\delta-1 / 2) \tau \end{aligned}$		$\frac{\delta^{\prime}}{2 \sqrt{\delta^{\prime}}+\sqrt{1+2 \delta^{\prime}}}$
Full bridge 1:N Fig 20.22c Push pull 1:1:N Fig 20.22a	$\begin{gathered} \frac{1}{1-2 \delta} N \\ \delta>1 / 2 \end{gathered}$	$\begin{aligned} & \frac{1}{16} \Delta i_{L L} \tau \\ & I_{\text {out }} \delta \tau \end{aligned}$	$E_{i n} \delta \tau$	$\frac{2 \delta^{\prime}-1}{2 \sqrt{2}\left[\sqrt{\delta^{\prime}}+\sqrt{2 \delta^{\prime}-1}\right]}$

Figure 20.22. Isolated multi switch, current sourced dc to dc converters: (a) push-pull, (b) half-bridge, and (c) full-bridge.

20.13 Analysis of non-continuous inductor current operation

Operation with constant input voltage, E

In applications were the input voltage E_{i} is fixed, as with rectifier ac voltage input circuits and battery supplies, the output voltage v_{o} can be controlled by varying the duty cycle.
thermined solely in transfer function for the three basic converters is egion, for a constant input voltage, can duty cycle, δ. Operation in the discontinuous inductor current the normalised output or input current, as shown in figure 20.27. Region and boundary equations, for a constant input voltage E_{i}, are summarised in tables 20.11 and 20.12.

Operation with constant output voltage, v_{0}

In applications were the output voltage v_{o} is fixed, as required with regulated dc power supplies, the effects of varying input voltage E_{i} can be controlled and compensated by varying the duty cycle.
n the inductor continuous current conduction region, the transfer function is determined solely in terms of characterised in terms of duty cycle and the normalised output or input current, as shown in figure 2028 . Region and boundary equations, for a constant output voltage v, are summarised in tables 20.13 and 20.14.

Because of the invariance of power, the output current \bar{I}_{o} characteristics for each converter with a constant input voltage E_{i}, shown in figure 20.24 , are the same as those for the input current \bar{I}_{i} when the output voltage v_{o} is maintained constant, as shown in figure 20.28. [That is, the right hand side of each plot in figures 20.27 and 20.28 (or figures 20.23 and 20.24) are the same.]

Generalised characteristics, with operating condition $k(=R T / L)$, for the three basic converters, are summarised in Table 20.15. The associated monographs in figures 20.30, 20.31, and 20.32, with a specific load condition, k, for each converter, yield the inductor current waveforms for any on-state duty cycle δ. The three graphs illustrate operational boundaries between continuous inductor current at high δ and discontinuous inductor current at lower δ.
The graphs for the boost converter in figure 20.31 highlight a little appreciated feature that, if $k>131 / 2$, then discontinuous inductor current having appeared, disappears at lower and higher duty cycles. Specifically, continuous inductor current occurs for low duty cycles, where the same theoretical equation is interpreted to the contrary. That is, from Table 19.2, the roots of

$$
\begin{equation*}
\delta(1-\delta)^{2} \leq \frac{2}{k} \tag{20.9}
\end{equation*}
$$

are not interpreted correctly. The correct interpretation of δ and $k\left(=R_{T} / L\right)$ gives:

- for $k<131 / 2$, discontinuous inductor current never occurs, independent of δ (equation (20.9) has two imaginary roots)
- for $k=131 / 2$, discontinuous inductor current occurs at only $\delta=1 / 3$ (equation (20.9) has three roots, two of which are coincident at $\delta=1 / 3$)
- for $k>131 / 2$, discontinuous inductor current occurs for δ around $1 / 3$ as given by the two (of the three) real roots of equation (20.9) associated with the local minimum turning point of the cubic equation (20.9).

Figure 20.23. Characteristics for three $d c$-dc converters with respect to \bar{I}_{o}, when the input voltage E_{i} is held constant. See Table 20.11.

Table 20．11：Transfer functions with constant input voltage，E_{i} ，with respect to \bar{I}_{o}

$\begin{gathered} E_{i} \\ \text { constant } \end{gathered}$	converter		
	step－down （buck）	step－up （boost）	step－up／down （buck－boost）
reference equation	（19．4）	（19．50）	（19．80）
continuous inductor current conduction （and change of variable）	$\frac{v_{o}}{E_{i}}=\delta$	$\frac{v_{o}}{E_{i}}=\frac{1}{1-\delta}$	$\frac{v_{o}}{E_{i}}=\frac{-\delta}{1-\delta}$
	$\delta=\frac{V_{o}}{E_{i}}$	$\delta=\frac{\frac{v_{o}}{E_{i}}-1}{\frac{v_{o}}{E_{i}}}$	$\delta=\frac{\frac{v_{o}}{E_{i}}}{\frac{v_{o}}{E_{i}}-1}$
reference equation	（19．21）	（19．65）	（19．96）
discontinuous inductor current conduction	$\frac{v_{o}}{E_{i}}=\frac{1}{1+\frac{2 L \bar{I}_{o}}{\delta^{2} \tau E_{i}}}$	$\frac{v_{o}}{E_{i}}=1+\frac{\delta^{2} E_{i} \tau}{2 L \bar{L}_{o}}$	$\frac{v_{o}}{E_{i}}=-\frac{\delta^{2} E_{i} \tau}{2 L \bar{I}_{o}}$
normalised $\frac{v_{o}}{E_{i}}=$ where $\hat{\bar{I}}_{o}=\frac{E_{i} \tau}{8 L}$	$\frac{v_{o}}{E_{i}}=\frac{1}{1+\frac{1}{4 \delta^{2}} \times \frac{\bar{I}_{o}}{\hat{\bar{I}}_{o}}}$	$\frac{v_{o}}{E_{i}}=1+4 \delta^{2} / \frac{\bar{I}_{o}}{\overline{\bar{I}}_{o}}$	$\frac{v_{o}}{E_{i}}=-4 \delta^{2} / \frac{\bar{I}_{o}}{\hat{\bar{I}}_{o}}$
$\bar{I}_{o}=\bar{I}_{o}=1 \mathrm{pu} @$	$\delta=1 / 2 ; \frac{v_{o}}{E_{i}}=1 / 2$	$\delta=1 / 2 ; \frac{V_{o}}{E_{i}}=2$	$\delta=1 / 2 ; \frac{V_{o}}{E_{i}}=-1$
change of variable $\frac{\overline{\bar{I}}_{o}}{\overline{\bar{I}}_{o}}=$	$\frac{\bar{I}_{o}}{\overline{\bar{I}}_{o}}=4 \delta^{2} \times \frac{\left(1-\frac{v_{o}}{E_{i}}\right)}{\frac{v_{o}}{E_{i}}}$	$\frac{\bar{I}_{o}}{\frac{\bar{I}_{o}}{}}=4 \delta^{2} \times \frac{1}{\frac{v_{o}}{E_{i}}-1}$	$\frac{\bar{I}_{o}}{\hat{\bar{I}}_{o}}=-4 \delta^{2} \times \frac{1}{\frac{v_{o}}{E_{i}}}$
change of variable $\delta=$ all with a boundary $\delta=1 / 2+1 / 2 \sqrt{1-\frac{\bar{I}_{o}}{\hat{\bar{I}}_{o}}}$	$\delta=1 / 2 \sqrt{\frac{\bar{I}_{o}}{\frac{\bar{I}_{o}}{\hat{I}_{o}}} \times \frac{\frac{V_{o}}{E_{i}}}{1-\frac{V_{o}}{E_{i}}}}$	$\delta=1 / 2 \sqrt{\frac{\bar{I}_{o}}{\overline{⿳ ㇒ ⿻ 冂 一}_{o}} \times\left(\frac{V_{o}}{E_{i}}-1\right)}$	$\delta=1 / 2 \sqrt{\left.\frac{\bar{I}_{o}}{\bar{I}_{o}} \times \frac{v_{o}}{E_{i}} \right\rvert\,}$
conduction boundary $\delta=1 / 2+1 / 2 \sqrt{1-\frac{\bar{I}_{o}}{\hat{\bar{I}}_{o}}}$	$\begin{aligned} \frac{\bar{I}_{o}}{\overline{\bar{I}}_{o}} & =4 \times \frac{v_{o}}{E_{i}}\left(1-\frac{v_{o}}{E_{i}}\right) \\ & =4 \delta(1-\delta) \end{aligned}$	$\begin{aligned} \frac{\bar{I}_{o}}{\hat{\bar{I}}_{o}} & =4 \times \frac{\left(\frac{v_{o}}{E_{i}}-1\right)}{\left(\frac{v_{o}}{E_{i}}\right)^{2}} \\ & =4 \delta(1-\delta) \end{aligned}$	$\begin{aligned} \frac{\bar{I}_{o}}{\overline{\bar{I}}_{o}} & =-4 \times \frac{\frac{v_{o}}{E_{i}}}{\left(1-\frac{v_{o}}{E_{i}}\right)^{2}} \\ & =4 \delta(1-\delta) \end{aligned}$

Figure 20．24．Characteristics for three $d c$－dc converters with respect to \bar{I}_{i} ， when the input voltage E_{i} is held constant．See Table 20.12

Table 20.12: Transfer functions with constant input voltage, E_{i}, with respect to \bar{I}_{i}

$\begin{gathered} E_{i} \\ \text { constant } \end{gathered}$	converter		
	step-down (buck)	step-up (boost)	step-up/down (buck-boost)
reference equation	(19.4)	(19.50)	(19.80)
continuous inductor current conduction (and change of variable)	$\frac{v_{o}}{E_{i}}=\delta$	$\frac{v_{o}}{E_{i}}=\frac{1}{1-\delta}$	$\frac{v_{o}}{E_{i}}=\frac{-\delta}{1-\delta}$
	$\delta=\frac{V_{o}}{E_{i}}$	$\delta=\frac{\frac{v_{o}}{E_{i}}-1}{\frac{v_{o}}{E_{i}}}$	$\delta=\frac{\frac{v_{o}}{E_{i}}}{\frac{v_{o}}{E_{i}}-1}$
reference equation	(19.20)	(19.66)	(19.96)
discontinuous inductor current conduction	$\frac{v_{o}}{E_{i}}=1-\frac{2 L \bar{I}_{i}}{\delta^{2} \tau E_{i}}$	$\frac{v_{o}}{E_{i}}=\frac{1}{1-\frac{E_{i} \tau \delta^{2}}{2 L \bar{I}_{i}}}$	$\frac{v_{o}}{E_{i}}=\frac{v_{o} \tau \delta^{2}}{2 L \bar{L}_{i}}$
normalised $\frac{v_{o}}{E_{i}}=$	$\frac{v_{o}}{E_{i}}=1-\frac{4}{27 \delta^{2}} \times \frac{\bar{I}_{i}}{\bar{I}_{i}}$ where $\hat{\bar{I}}_{i}=\frac{4}{27} \times \frac{E_{i} \tau}{2 L}$	$\frac{v_{o}}{E_{i}}=\frac{1}{1-\delta^{2} /\left(\frac{\bar{I}_{i}}{\bar{I}_{i}}\right)}$ where $\hat{\bar{I}}_{i}=\frac{E_{i} \tau}{2 L}$	$1=\delta^{2} / \frac{\bar{I}_{i}}{\bar{I}_{i}}$ where $\hat{\bar{I}}_{i}=\frac{E_{i} \tau}{2 L}$
$\bar{I}_{i}=\overline{\bar{I}}_{i}=1 \mathrm{pu} @$	$\delta=2 / 3 ; \frac{v_{o}}{E_{i}}=2 / 3$	$\delta=1 ; \frac{v_{o}}{E_{i}} \rightarrow \infty$	$\delta=1 ; \frac{v_{o}}{E_{i}} \rightarrow-\infty$
change of variable $\frac{\bar{I}_{i}}{\hat{\bar{I}}_{i}}=$	$\frac{\bar{I}_{i}}{\bar{I}_{i}}=27 / 4 \delta^{2}\left(1-\frac{v_{0}}{E_{i}}\right)$	$\frac{\bar{I}_{i}}{\bar{I}_{i}}=\delta^{2} \times \frac{\frac{v_{o}}{E_{i}}}{\left(\frac{v_{o}}{E_{i}}-1\right)}$	$\frac{\bar{I}_{i}}{\overline{\bar{I}}_{i}}=\delta^{2}$
change of variable $\delta=$	$\delta=\sqrt{4 / 27 \times \frac{\bar{I}_{i}}{\bar{I}_{i}} \times \frac{1}{1-\frac{V_{o}}{E_{i}}}}$	$\delta=\sqrt{\sqrt{\frac{\bar{I}_{i}}{\bar{I}_{i}} \times \frac{\frac{v_{o}}{E_{i}}-1}{\frac{v_{o}}{E_{i}}}}}$	$\delta=\sqrt{\frac{\bar{I}_{i}}{\overline{\bar{I}_{i}}}}$
conduction boundary	$\begin{aligned} \frac{\bar{I}_{i}}{\hat{I}_{i}} & =27 / 4 \times\left(1-\frac{v_{o}}{E_{i}}\right)\left(\frac{v_{o}}{E_{i}}\right)^{2} \\ & =27 / 4 \delta^{2}(1-\delta) \end{aligned}$	$\begin{aligned} \frac{\bar{I}_{i}}{\overline{\bar{I}}_{i}} & =\frac{\left(\frac{v_{o}}{E_{i}}-1\right)}{\frac{v_{o}}{E_{i}}} \\ & =\delta \end{aligned}$	$\begin{aligned} \frac{\bar{I}_{i}}{\bar{I}_{i}} & =\left(\frac{\frac{v_{o}}{E_{i}}}{\frac{v_{o}}{E_{i}}-1}\right)^{2} \\ & =\delta^{2} \end{aligned}$
conduction boundary	$\frac{\overline{\bar{I}}_{i}}{\overline{\bar{I}}_{i}}=27 / 4 \delta^{2}(1-\delta)$	$\delta=\frac{\overline{\bar{I}}_{i}}{\hat{\bar{I}}_{i}}$	$\delta=\sqrt{\frac{\bar{I}_{i}}{\overline{I_{i}}}}$

Figure 20.25. Characteristics for three dc-dc converters with respect to \bar{I}_{o}, when the output voltage v_{o} is held constant. See Table 20.13

Table 20.13: Transfer functions with constant output voltage, \mathbf{v}_{o}, with respect to \bar{I}_{o}

$\begin{gathered} V_{0} \\ \text { constant } \end{gathered}$	converter		
	step-down (buck)	step-up (boost)	step-up/down (buck-boost)
reference equation	(19.4)	(19.50)	(19.80)
continuous inductor current conduction (and change of variable)	$\frac{v_{o}}{E_{i}}=\delta$	$\frac{v_{o}}{E_{i}}=\frac{1}{1-\delta}$	$\frac{v_{o}}{E_{i}}=\frac{-\delta}{1-\delta}$
	$\delta=\frac{v_{o}}{E_{i}}$	$\delta=\frac{\frac{v_{o}}{E_{i}}-1}{\frac{v_{o}}{E_{i}}}$	$\delta=\frac{\frac{v_{o}}{E_{i}}}{\frac{v_{o}}{E_{i}}-1}$
reference equation	(19.20)	(19.66)	(19.96)
discontinuous inductor current conduction	$\frac{v_{o}}{E_{i}}=1-\frac{2 L \bar{I}_{i}}{\delta^{2} \tau E_{i}}$	$\frac{v_{o}}{E_{i}}=\frac{1}{1-\frac{E_{i} \tau \delta^{2}}{2 L \bar{I}_{i}}}$	$\frac{v_{o}}{E_{i}}=\frac{v_{o} \tau \delta^{2}}{2 L \bar{I}_{i}}$
normalised $\frac{v_{o}}{E_{i}}=$	$\frac{v_{o}}{E_{i}}=1-\frac{1}{4 \delta^{2}} \times \frac{\bar{I}_{o}}{\hat{\bar{I}}_{o}} \times\left(\frac{v_{o}}{E_{i}}\right)^{2}$ where $\hat{\bar{I}}_{o}=\frac{v_{o} \tau}{2 L}$	$\frac{v_{o}}{E_{i}}=\frac{1}{1-27 / 4 \delta^{2} /\left(\frac{\bar{I}_{o}}{\hat{I}_{o}} \times\left(\frac{v_{o}}{E_{i}}\right)^{2}\right)}$ where $\hat{\bar{I}}_{o}=\frac{4}{27} \times \frac{v_{o} \tau}{2 L}$	$\frac{v_{o}}{E_{i}}=\delta^{2} /\left(\frac{\bar{I}_{o}}{\hat{I}_{o}} \times \frac{v_{o}}{E_{i}}\right)$ where $\hat{\bar{I}}_{o}=\left\|\frac{v_{0} \tau}{2 L}\right\|$
$\bar{I}_{o}=\bar{I}_{o}=1 \mathrm{pu} @$	$\delta=0 ; \frac{V_{o}}{E_{i}}=0$	$\delta=1 / 3 ; \frac{V_{o}}{E_{i}}=11 / 2$	$\delta=0 ; \frac{v_{o}}{E_{i}}=0$
change of variable $\frac{\bar{I}_{o}}{\hat{\bar{I}}_{o}}=$	$\frac{\bar{I}_{o}}{\bar{I}_{o}}=\delta^{2} \times \frac{\left(1-\frac{v_{o}}{E_{i}}\right)}{\left(\frac{v_{o}}{E_{i}}\right)^{2}}$	$\frac{\bar{I}_{o}}{\hat{\bar{I}}_{o}}=27 / 4 \delta^{2} \times \frac{1}{\left(\frac{v_{o}}{E_{i}}-1\right) \frac{v_{o}}{E_{i}}}$	$\frac{\bar{I}_{o}}{\overline{\bar{I}}_{o}}=\delta^{2} \times \frac{1}{\left(\frac{v_{o}}{E_{i}}\right)^{2}}$
change of variable $\delta=$	$\delta=\frac{v_{o}}{E_{i}} \sqrt{\frac{\bar{I}_{o}}{\hat{\bar{I}}_{o}} \times \frac{1}{1-\frac{V_{o}}{E_{i}}}}$	$\delta=\sqrt{4 / 27 \times \frac{\bar{I}_{o}}{\hat{I}_{o}} \times\left(\frac{v_{o}}{E_{i}}-1\right) \frac{v_{o}}{E_{i}}}$	$\delta=\left\|\frac{v_{o}}{E_{i}}\right\| \sqrt{\frac{\bar{I}_{o}}{\frac{\bar{I}_{o}}{}}}$
conduction boundary	$\frac{\overline{\bar{I}}_{o}}{\hat{\bar{I}}_{o}}=1-\frac{v_{o}}{E_{i}}$ $=1-\delta$	$\begin{aligned} \frac{\bar{I}_{o}}{\overline{\bar{I}}_{o}} & =27 / 4 \times \frac{\left(\frac{v_{o}}{E_{i}}-1\right)}{\left(\frac{v_{o}}{E_{i}}\right)^{3}} \\ & =27 / 4 \delta(1-\delta)^{2} \end{aligned}$	$\begin{gathered} \frac{\overline{\bar{I}}_{o}}{\overline{\bar{I}}_{o}}=\frac{1}{\left(1-\frac{v_{o}}{E_{i}}\right)^{2}} \\ =(1-\delta)^{2} \end{gathered}$
conduction boundary	$\delta=1-\frac{\bar{I}_{o}}{\hat{\bar{I}}_{o}}$	$\frac{\bar{I}_{o}}{\hat{\bar{I}}_{o}}=27 / 4 \delta(1-\delta)^{2}$	$\delta=1-\sqrt{\frac{\bar{I}_{o}}{\bar{I}_{o}}}$

Figure 20.26. Characteristics for three dc-dc converters with respect to \bar{I} when the output voltage v_{o} is held constant. See Table 20.14

Table 20.14: Transfer functions with constant input voltage, \boldsymbol{v}_{o}, with respect to \bar{I}_{i}

$\begin{gathered} V_{0} \\ \text { constant } \end{gathered}$	converter		
	step-down (buck)	$\begin{aligned} & \text { step-up } \\ & \text { (boost) } \end{aligned}$	step-up/down (buck-boost)
reference equation	(19.4)	(19.50)	(19.80)
continuous inductor current conduction (and change of variable)	$\frac{v_{o}}{E_{i}}=\delta$	$\frac{v_{o}}{E_{i}}=\frac{1}{1-\delta}$	$\frac{v_{o}}{E_{i}}=\frac{-\delta}{1-\delta}$
	$\delta=\frac{V_{o}}{E_{i}}$	$\delta=\frac{\frac{v_{o}}{E_{i}}-1}{\frac{v_{o}}{E_{i}}}$	$\delta=\frac{\frac{v_{o}}{E_{i}}}{\frac{v_{o}}{E_{i}}-1}$
reference equation	(19.21)	(19.65)	(19.96)
discontinuous inductor current conduction	$\frac{v_{o}}{E_{i}}=\frac{1}{1+\frac{2 L \bar{I}_{i}}{\delta^{2} \tau v_{o}}}$	$\frac{v_{o}}{E_{i}}=1+\frac{\delta^{2} v_{o} \tau}{2 L \bar{L}_{i}}$	$\frac{v_{o}}{E_{i}}=-\frac{\delta^{2} v_{o} \tau}{2 L \bar{I}_{i}}$
normalised $\frac{v_{o}}{E_{i}}=$ where $\hat{\bar{I}}_{i}=\left\|\frac{v_{o} \tau}{8 L}\right\|$	$\frac{v_{o}}{E_{i}}=\frac{1}{1+\frac{1}{4 \delta^{2}} \times \frac{\bar{I}_{i}}{\bar{I}_{i}}}$	$\frac{v_{o}}{E_{i}}=1+4 \delta^{2} / \frac{\bar{I}_{i}}{\hat{\bar{I}}_{i}}$	$\frac{v_{o}}{E_{i}}=-4 \delta^{2} / \frac{\bar{I}_{i}}{\hat{\bar{I}}_{i}}$
$\bar{I}_{i}=\overline{\bar{I}}_{i}=1 \mathrm{pu} @$	$\delta=1 / 2 ; \frac{v_{o}}{E_{i}}=1 / 2$	$\delta=1 / 2 ; \frac{V_{o}}{E_{i}}=2$	$\delta=1 / 2 ; \frac{V_{o}}{E_{i}}=-1$
change of variable $\frac{\bar{I}_{i}}{\hat{\bar{I}}_{i}}=$	$\frac{\bar{I}_{i}}{\bar{I}_{i}}=4 \delta^{2} \times \frac{\left(1-\frac{v_{0}}{E_{i}}\right)}{\frac{v_{o}}{E_{i}}}$	$\frac{\bar{I}_{i}}{\overline{\bar{I}}_{i}}=4 \delta^{2} \times \frac{1}{\frac{v_{o}}{E_{i}}-1}$	$\frac{\bar{I}_{i}}{\frac{\bar{I}_{i}}{}}=-4 \delta^{2} \times \frac{1}{\frac{v_{o}}{E_{i}}}$
change of variable $\delta=$ all with a boundary $\delta=1 / 2+1 / 2 \sqrt{1-\frac{\bar{I}_{o}}{\hat{\bar{I}}_{o}}}$	$\delta=1 / 2 \sqrt{\frac{\bar{I}_{i}}{\bar{I}_{i}} \times \frac{\frac{V_{o}}{E_{i}}}{1-\frac{V_{o}}{E_{i}}}}$	$\delta=1 / 2 \sqrt{\frac{\bar{I}_{i}}{\bar{I}_{i}} \times\left(\frac{v_{o}}{E_{i}}-1\right)}$	$\delta=1 / 2 \sqrt{\left.\frac{\bar{I}_{i}}{\bar{I}_{i}} \times \frac{v_{o}}{E_{i}} \right\rvert\,}$
conduction boundary $\delta=1 / 2+1 / 2 \sqrt{1-\frac{\bar{I}_{o}}{\hat{\bar{I}}_{0}}}$	$\frac{\bar{I}_{i}}{\hat{I}_{i}}=4 \frac{v_{o}}{E_{i}}\left(1-\frac{v_{o}}{E_{i}}\right)$ $=4 \delta(1-\delta)$	$\begin{aligned} \frac{\bar{I}_{i}}{\hat{\bar{I}}_{i}} & =4 \times \frac{\left(\frac{v_{o}}{E_{i}}-1\right)}{\left(\frac{v_{o}}{E_{i}}\right)^{2}} \\ & =4 \delta(1-\delta) \end{aligned}$	$\begin{aligned} \frac{\bar{I}_{i}}{\bar{I}_{i}} & =-4 \times \frac{\frac{v_{o}}{E_{i}}}{\left(1-\frac{v_{o}}{E_{i}}\right)^{2}} \\ & =4 \delta(1-\delta) \end{aligned}$

Figure 20.27. Characteristics for three dc-dc converters, when the input voltage E_{i} is held constant.

Figure 20.28. Characteristics for three dc-dc converters, when the output voltage v_{o} is held constant.

	$\begin{gathered} 257>{ }^{1} 7 \\ \left(\frac{\rho y}{\left\|\exists \exists / o_{1}\right\|}-1\right)_{\rho \mathrm{A}} \sigma_{\mathcal{S}}=\frac{1}{7} \end{gathered}$		$\begin{gathered} 257>^{1} 7 \\ \left(\Omega \times / 13 / o_{1}-1\right) a_{S A}=2 / 7 \end{gathered}$	$\begin{gathered} (\rho-I) z / 1={ }^{257>14} \mid 2 / 7 \\ \rho \mathrm{~A} \end{gathered}$	$\underline{y} / \mathrm{T}-{ }^{0} \mathrm{~S}={ }^{257>2} \mid 2 / 7$	$\begin{array}{r} { }^{o} I>\left({ }^{\circ} Q+\rho>7>\rho\right){ }^{7}! \\ 0={ }^{\circ} I \end{array}$
$\rho={ }^{1577} 12 / 7$	$\rho={ }^{1,487} 12 / 7$	$\rho={ }^{4,75} 12 / 7$	$\rho={ }^{4,757} 12 / 7$	ρ A $\quad \rho z / 1=4 \geq \geq 12 / 7$	${ }^{\circ} S^{\prime} \times 1 I_{S}={ }^{4 \ggg} \mid 2 / 7$	
$\left\lvert\, \frac{1}{9} 1 \times \frac{\rho-1}{1}\right.$	$\frac{\left\|\begin{array}{c} \left.\prime \frac{7}{o_{1}} \right\rvert\, \\ \left\|\frac{7}{9_{1}}\right\| \end{array}\right\|+1}{x_{2} s y z / 1}$	$\frac{1}{9} \times \frac{\rho-\tau}{\tau}$	$\frac{\frac{1-\frac{1}{0} 1}{1}}{\frac{13}{0_{1}}} \times{ }_{2} \rho y z / 1$	${ }^{\prime}$, ${ }^{\text {A }}$	$\frac{\frac{13}{0_{1}}}{\frac{17}{0_{1}}-1} \times{ }_{2} \rho y z / 1$	$\begin{gathered} \left({ }^{0} \mathcal{S}+\mathcal{S}\right)\left(\frac{7}{!}+{ }^{7}!!\right) 7 / 1={ }^{7} \underline{I} \\ \frac{3}{y} \times{ }^{7} \underline{I} \end{gathered}$
	0'9y		0'9y		$\left.00^{\prime \frac{3}{9} 1}-\mathrm{I}\right] \rho ⿻ \mathrm{y}$	
0	$\frac{\left\|\frac{1}{\prime} \frac{3}{0_{1}}\right\|}{\left\|\frac{3}{0_{1}}\right\|+1} \times \rho-1$	0	$\frac{\frac{1-\frac{7}{o}}{0^{\prime}}}{\frac{7}{o_{1}}} \times \rho-\mathrm{I}$	0	$\frac{\frac{1}{0} 1}{I} \times g-1$	$\begin{aligned} \left({ }^{0} S+g\right)-\mathfrak{I} & = \\ \frac{2}{x_{7}} & ={ }^{x} g \end{aligned}$
$s-1$		$\rho-1$		$\rho-1$		$\frac{1}{\sigma_{7}}={ }^{\sigma_{S}}$
$\frac{\rho-1}{\rho-}$	$\underline{y z / r} \rho^{-}$	$\frac{\rho-\tau}{\tau}$		ρ		$\frac{\underline{3}}{y} \times o^{o}=\frac{{ }^{o} \underline{I}}{I} \underline{\underline{I}}=\left(g^{\prime} y\right)^{\frac{\prime}{o}}$
$\begin{aligned} & \frac{z(g-\tau)}{2}>y \\ & \frac{y}{z} \int^{-1}-1<g \end{aligned}$	$\begin{aligned} & \frac{\left.z^{(g-\tau}\right)}{2}<y \\ & \frac{y}{z} \int^{-\tau>g} \end{aligned}$	$2 / 20>y$	$\begin{aligned} & y / \tau>z_{z}(g-\tau) s \\ & \tau / L \tau<y \end{aligned}$	$\begin{aligned} & \frac{\rho-\tau}{\tau}>y \\ & \frac{y}{z}-I<g \end{aligned}$	$\begin{aligned} & \frac{\rho-I}{z}<y \\ & \frac{y}{z}-I>\rho \end{aligned}$	
sпопи!иоэ	snonu!puoss!p	snonupuos	snonupuoos!p	sпonupuoo	snonu!uuossp	$I>\frac{1}{\frac{1}{7}}=\rho>0 \leqslant \frac{7}{\frac{1}{d y}}=y$

Figure 20.29. Voltage transfer characteristics for the dc-dc converter output reversible, in terms of the output current $I_{\text {. }}$

Figure 20.30. Step-down (buck) converter normalised performance monogram for $k=4$, giving discontinuous inductor conduction for $\delta_{\text {crit }} \leq 1 / 2$. Inductor time domain current waveforms for $\delta_{\text {cont }}=0.85$ (continuous inductor current) and $\delta_{\text {dis }}=0.15$ (discontinuous inductor current),

Figure 20.32. Step-up/down (buck-boost) converter normalised performance monogram for $k=8$, giving discontinuous inductor current for $\delta_{\text {crit }} \leq 1 / 2$. Inductor time domain current waveforms for $\delta_{\text {cont }}$ 0.6 (continuous inductor current) and $\delta_{\text {dis }}=1 / 4$ (discontinuous inductor current).

Capacitor discharge in switch-off period when $\delta \leq 0.61$.

Fisher, M. J., Power Electronics, PWS-Kent Publishing, 1991
Hart, D.W., Introduction to Power Electronics,
Prentice-Hall, Inc, 1994
Hnatek, E. R., Design of Switch Mode Power Supplies,
Van Nostrand Reinhold, 1981
Mohan, N., Power Electronics, $3{ }^{\text {rd }}$ Edition,
Wiley International, 2003
Thorborg, K., Power Electronics - in theory and practice, Chartwell-Bratt, 1993.
http://www.ipes.ethz.ch

[^0]: ductor buck converter S5士：（a）basic topology and（b）
 input stage to clamp leakage energy release voltage．

