Linear recurrences and Chebyshev polynomials

April 28, 2003

Sergey Kitaev and Toufik Mansour ¹

Matematik, Chalmers tekniska högskola och Göteborgs universitet,

S-412 96 Göteborg, Sweden

kitaev@math.chalmers.se, toufik@math.chalmers.se

1 Introduction and the main result

As usual, Fibonacci polynomials $F_n(x)$, Lucas polynomials $L_n(x)$, and Pell polynomials $P_n(x)$ are defined by the second-order linear recurrence

$$t_{n+2} = at_{n+1} + bt_n, (1)$$

¹Research financed by EC's IHRP Programme, within the Research Training Network "Algebraic Combinatorics in Europe", grant HPRN-CT-2001-00272

2

with given a, b, t_0, t_1 and $n \ge 0$. This sequence was introduced by Horadam [3] in 1965, and it generalizes many sequences (see [1, 4]). Examples of such sequences are Fibonacci polynomials sequence $(F_n(x))_{n\ge 0}$, Lucas polynomials sequence $(L_n(x))_{n\ge 0}$, and Pell polynomials sequence $(P_n(x))_{n\ge 0}$, when one has a=x, $b=t_1=1$, $t_0=0$; $a=t_1=x$, b=1, $t_0=2$; and a=2x, $b=t_1=1$, $t_0=0$; respectively.

Chebyshev polynomials of the second kind (in this paper just Chebyshev polynomials) are defined by

$$U_n(\cos\theta) = \frac{\sin(n+1)\theta}{\sin\theta}$$

for $n \geq 0$. Evidently, $U_n(x)$ is a polynomial of degree n in x with integer coefficients. For example, $U_0(x) = 1$, $U_1(x) = 2x$, $U_2(x) = 4x^2 - 1$, and in general (see Recurrence 1 for a = 2x, b = -1, $t_0 = 1$, and $t_1 = 2x$), $U_{n+2}(x) = 2xU_{n+1}(x) - U_n(x)$. Chebyshev polynomials were invented for the needs of approximation theory, but are also widely used in various other branches of mathematics, including algebra, combinatorics, and number theory (see [5]).

Lemma 1.1 Let $(t_n)_{n\geq 0}$ be any sequence that satisfies $t_{n+2}=2x\cdot t_{n+1}-t_n$ with given $t_0,\ t_1,\ and\ n\geq 0$. Then for all $n\geq 0$,

$$t_n = t_1 \cdot U_{n-1}(x) - t_0 \cdot U_{n-2}(x),$$

where U_m is the mth Chebyshev polynomial of the second kind.

3

Proof. A proof is straightforward using the relation $U_{n+2}(x) = 2xU_{n+1}(x) - U_n(x)$ and induction on n.

Let A be a tile of size 1×1 and B be a tile of size 1×2 . We denote by \mathfrak{L}_n the set of all tilings of a $1 \times n$ rectangle with tiles A and B. An element of \mathfrak{L}_n can be written as a sequence of the letters A and B. For example, $\mathfrak{L}_1 = \{A\}$, $\mathfrak{L}_2 = \{AA, B\}$, and $\mathfrak{L}_3 = \{AAA, AB, BA\}$. We denote by $|\alpha|$ the number of tiles A and B in α . For example, |AAA| = 3 and |AB| = 2.

Proposition 1.2 The number of tilings of a $1 \times n$ rectangle with tiles A and B is the Fibonacci number F_{n+1} , that is, $|\mathfrak{L}_n| = F_{n+1}$.

Proof. The result is immediate for $n \leq 1$, so it is sufficient to show that the number of such tilings satisfies the recurrence $F_m = F_{m-1} + F_{m-2}$. To do this, we observe that there is a one-to-one correspondence between the tilings of a $1 \times (n-i)$ rectangle and the tilings of a $1 \times n$ rectangle in which the rightmost tile has length i, where i = 1, 2. Therefore, if we count tilings of a $1 \times n$ rectangle according to the length of the rightmost tile, we find the number of such tilings satisfies the recurrence $F_m = F_{m-1} + F_{m-2}$, as desired.

Let α be any element of \mathfrak{L}_n , we define β by $\beta_i = 1$ if $\alpha_i = A$; otherwise $\beta_i = 2$, and we write $\beta = \chi(\alpha)$. For example, $\chi(AAABAB) = 111212$.

Now, let us fix an integer s and a natural number q such that $q \ge 1$. Let $a_0, a_1, \ldots, a_{q-1},$ $b_0, b_1, \ldots, b_{q-1}$ be 2q constants and $\mathbf{a} = (a_0, a_1, \ldots, a_{q-1}), \mathbf{b} = (b_0, b_1, \ldots, b_{q-1})$. For any

 $\alpha \in \mathfrak{L}_n$, we define $v(n;s) = v_{\mathbf{a},\mathbf{b}}(n;\alpha,q,s) = \prod_{i=1}^{|\alpha|} k(\beta_i)$ where

$$k(\beta_i) = \begin{cases} a_{(s+\beta_1 + \dots + \beta_i) \bmod q}, & \text{if } \beta_i = 1, \\ b_{(s+\beta_1 + \dots + \beta_i) \bmod q}, & \text{if } \beta_i = 2, \end{cases}$$

and $\beta = \chi(\alpha)$. For example, if q = 3, $a_n = n$ and $b_n = 1$ for n = 0, 1, 2, s = 0, and $\alpha = AABAB$, then we have that

$$v_{\mathbf{a},\mathbf{b}}(n;\alpha,q,s) = a_{1 \bmod 3} a_{2 \bmod 3} b_{4 \bmod 3} a_{5 \bmod 3} b_{7 \bmod 3} = a_1 a_2 b_1 a_2 b_1 = a_1 a_2^2 = 4.$$

We will be interestes in the sum of all $v_{\mathbf{a},\mathbf{b}}(n;\alpha,q,s)$ over all $\alpha \in \mathfrak{L}_n$, which is denoted by $V(n;s) = V_{\mathbf{a},\mathbf{b}}(n;q,s)$, that is, $V(n;s) = \sum_{\alpha \in \mathfrak{L}_n} v_{\mathbf{a},\mathbf{b}}(n;\alpha,q,s)$. For example, $V(1;s) = a_{(s+1) \bmod q}$ and $V(2;s) = a_{(s+1) \bmod q} a_{(s+2) \bmod q} + b_{(s+2) \bmod q}$. We extend the definition of V(n;s) as V(0;s) = 1 and V(n;s) = 0 for n < 0. We remark that V(n;q,s) can be given by a combinatorial interpretation as follows: V(n;q,s) counts the number of ways to tile a boards of length n, with cells numbered s+1 through s+n, using colored tiles of size 1×1 and tiles of size 1×2 . For a tile of size 1×1 on cell i, we have $a_{i \bmod q}$ color choices; and for a tile of size 1×2 on cells i-1 and i, we have $b_{i \bmod q}$ choices. The main result of this paper can be formulated as follows.

Theorem 1.3 Let $(x_n)_{n\geq 0}$ be any sequence $(x_n=x_{n;q}(\mathbf{a},\mathbf{b}))$ that satisfies

$$x_{an+d} = a_d \cdot x_{an+d-1} + b_d \cdot x_{an+d-2},\tag{2}$$

for all $n \ge 1$, $0 \le d \le q-1$, with given $x_0, x_1, \ldots, x_{q-1}$. Then for $n \ge 1$, x_{qn+d} is given by

$$\sqrt{-J_{q;d}}^{n-2} \left(x_{q+d} \sqrt{-J_{q;d}} U_{n-1}(w_{q;d}) + (x_{2q+d} - I_{q;d} x_{q+d}) \cdot U_{n-2}(w_{q;d}) \right),$$

for all $n \geq 1$, where U_m is the mth Chebyshev polynomial,

$$x_{q+d} = V(d+1; -1)x_{q-1} + b_0V(d; 0)x_{q-2}$$
$$x_{2q+d} = V(q+d+1; -1)x_{q-1} + b_0V(q+d; 0)x_{q-2},$$

and

$$w_{q;d} = \frac{I_{q;d}}{2\sqrt{-J_{q;d}}},$$

$$I_{q;d} = b_{(d+1) \, mod \, q} \cdot V(q-2;d+1) + V(q;d),$$

$$J_{q;d} = b_{(d+1) \, mod \, q} \cdot \left(V(q-1;d+1)V(q-1;d) - V(q;d)V(q-2;d+1)\right).$$
(3)

The paper is organized as follows. In Section 2 we give a proof of Theorem 1.3, and in Section 3 we give some applications for Theorem 1.3.

2 Proofs

Throughout this section, we assume that q is a natural number $(q \ge 1)$ and s is an integer. Also, let $a_0, a_1, \ldots, a_{q-1}, b_0, b_1, \ldots, b_{q-1}$ be 2q constants and $\mathbf{a} = (a_0, a_1, \ldots, a_{q-1}),$ $\mathbf{b} = (b_0, b_1, \ldots, b_{q-1}).$ We start from the following lemma.

Lemma 2.1 Let ℓ be an integer such that $\ell \geq s+2$. Then

$$V(\ell - s; s) = a_{\ell \, mod \, q} \cdot V(\ell - s - 1; s) + b_{\ell \, mod \, q} \cdot V(\ell - s - 2; s).$$

Proof. To verify this lemma, we observe that there is a one-to-one correspondence between the tilings of a $1 \times (\ell - s - i)$ rectangle and the tilings of a $1 \times (\ell - s)$ rectangle in which the rightmost tile has length i, where i = 1, 2. Hence $V(\ell - s; s) = a_{\ell \mod q} \cdot V(\ell - s - 1; s) + b_{\ell \mod q} \cdot V(\ell - s - 2, s)$, where the first term corresponds to the case i = 1 and the second one to the case i = 2.

Now, let us apply this lemma to find x_{qn+d+m} in terms of x_{qn+d} and x_{qn+d-1} .

Proposition 2.2 Let $q - 1 \ge d \ge 0$ and $n \ge 1$. Then for all $m \ge 0$,

$$x_{qn+d+m} = V(m;d) \cdot x_{qn+d} + b_{(d+1) \bmod q} \cdot V(m-1;d+1) \cdot x_{qn+d-1}.$$

Proof. Let us prove this proposition by induction on m. Since

$$x_{qn+d+0} = 1 \cdot x_{qn+d+0} + b_{(d+1) \bmod q} \cdot 0 \cdot x_{qn+d-1},$$

V(0;d)=1 and V(m;d)=0 for m<0, we have that the proposition holds for m=0. By Recurrence 2 we get

$$x_{qn+d+1} = a_{(d+1) \bmod q} \cdot x_{qn+d} + b_{(d+1) \bmod q} \cdot x_{qn+d-1}$$

$$= V(1;d) \cdot x_{qn+d} + b_{(d+1) \bmod q} \cdot V(0;d+1) \cdot x_{qn+d-1},$$

therefore the proposition holds for m=1. Now, we assume that the proposition holds for $0, 1, \ldots, m-1$, and prove that it holds for m. By induction hypothesis we have

$$x_{qn+d+m-2} = V(m-2;d) \cdot x_{qn+d} + b_{(d+1) \bmod q} \cdot V(m-3;d+1) \cdot x_{qn+d-1},$$

and

$$x_{qn+d+m-1} = V(m-1;d) \cdot x_{qn+d} + b_{(d+1) \bmod q} \cdot V(m-2;d+1) \cdot x_{qn+d-1},$$

hence, by Equation 2 we get

$$\begin{aligned} x_{qn+d+m} &= a_{(d+m) \bmod q} \cdot x_{qn+d+m-1} + b_{(d+m) \bmod q} \cdot x_{qn+m+d-2} \\ &= \left(a_{(d+m) \bmod q} \cdot V(m-1;d) + b_{(d+m) \bmod q} \cdot V(m-2;d) \right) x_{qn+d} \\ &+ b_{(d+1) \bmod q} \left(a_{(d+m) \bmod q} \cdot V(m-2;d+1) + b_{(d+m) \bmod q} \cdot V(m-3;d+1) \right) x_{qn+d-1}. \end{aligned}$$

Using Lemma 2.1 for $\ell=m+d$, s=d and for $\ell=m+d$, s=d+1, we get the desired result.

Now we introduce a recurrence relation that plays the crucial role in the proof of the Main Theorem.

Proposition 2.3 Let $q - 1 \ge d \ge 0$. Then for all $n \ge 2$,

$$x_{q(n+1)+d} = \left(b_{(d+1) \bmod q} \cdot V(q-2;d+1) + V(q;d)\right) x_{qn+d}$$

$$+b_{(d+1) \bmod q} \cdot \left(V(q-1;d+1)V(q-1;d) - V(q;d)V(q-2;d+1)\right) x_{q(n-1)+d}.$$

Proof. Using Proposition 2.2 for m = q - 1 we get

$$x_{q(n+1)+d-1} - b_{(d+1) \bmod q} \cdot V(q-2; d+1) \cdot x_{qn+d-1} = V(q-1; d) \cdot x_{qn+d}, \tag{4}$$

and for m = q we have

$$x_{q(n+1)+d} = V(q;d) \cdot x_{qn+d} + b_{(d+1) \bmod q} \cdot V(q-1;d+1) \cdot x_{qn+d-1}.$$
 (5)

Hence, Equation 4 yields

$$\begin{split} & x_{q(n+1)+d} - b_{(d+1) \bmod q} \cdot V(q-2;d+1) \cdot x_{qn+d} = \\ & = V(q;d) \bigg(x_{qn+d} - b_{(d+1) \bmod q} \cdot V(q-2;d+1) \cdot x_{qn+d} \bigg) \\ & + b_{(q+1) \bmod q} \cdot V(q-1;d+1) \bigg(x_{qn+d-1} - b_{(d+1) \bmod q} \cdot V(q-2;d+1) \cdot x_{q(n-1)+d-1} \bigg), \end{split}$$

and by using Equation 4 we get the desired result.

3 APPLICATIONS 9

Proof of Theorem 1.3. Recall the definitions in 3. Now we are ready to prove the main result of this paper. Using Proposition 2.3 we have for $n \ge 2$,

$$x_{q(n+1)+d} = I_{q;d} \cdot x_{qn+d} + J_{q;d} \cdot x_{q(n-1)+d}.$$

If we define $t_n = x_{qn+d}$ for $n \ge 1$, then we get

$$t_{n+1} = I_{q;d} \cdot t_n + J_{q;d} \cdot t_{n-1},$$

therefore, by defining $(-J_{q;d})^{n/2}t'_n = t_n$ we have for $n \geq 2$,

$$t'_{n+1} = 2w_{q;d}t'_n - t'_{n-1}.$$

Let us find expressions for t'_0 and t'_1 . By the recurrence for t_n we can define t_0 as $t_2 = I_{q;d}t_1 + J_{q;d}t_0$, which means that $t'_0 = t_0 = \frac{1}{J_{q;d}}(x_{2q+d} - I_{q;d}x_{q+d})$. By definitions, $t'_1 = \frac{x_{q+d}}{\sqrt{-J_{q;d}}}$. Using Proposition 2.2, we get $x_{q+d} = V(d+1;-1)x_{q-1} + b_0V(d;0)x_{q-2}$ and $x_{2q+d} = V(q+d+1;-1)x_{q-1} + b_0V(q+d;0)x_{q-2}$. Hence, using Lemma 1.1 we get the desired result.

3 Applications

There is a connection between the sequences which are defined by Recurrence 2, and the sequences which are define by Recurrence 1. Indeed, from Theorem 1.3 we get the 3 APPLICATIONS 10

following result.

Corollary 3.1 For given x_0 and x_{-1} , and the recurrence $x_{n+2} = a_0 x_{n+1} + b_0 x_n$, an explicit solution for this recurrence is given by

$$x_n = \sqrt{-b_0}^{n-2} \left[\sqrt{-b_0} (a_0 x_0 + b_0 x_{-1}) U_{n-1} \left(\frac{a_0}{2\sqrt{-b_0}} \right) + b_0 x_0 U_{n-2} \left(\frac{a_0}{2\sqrt{-b_0}} \right) \right],$$

where U_m is the mth Chebyshev polynomial.

Proof. Using Theorem 1.3 for q=1 with the parameters d=0, $I_{1;0}=a_0$, $J_{1;0}=b_0$, $x_1=a_0x_0+b_0x_{-1}$, $x_2=(a_0^2+b_0)x_0+a_0b_0x_{-1}$, and $w_{1;0}=\frac{a_0}{2\sqrt{-b_0}}$, we get the explicit solution for the recurrence $x_{n+2}=a_0x_{n+1}+b_0x_n$, as requested.

The first interesting case is q=2. Then Recurrence 2 gives

$$\begin{cases} x_{2n} = a_0 x_{2n-1} + b_0 x_{2n-2} \\ x_{2n+1} = a_1 x_{2n} + b_1 x_{2n-1}, \end{cases}$$
 (6)

with given x_0 and x_1 . In this case we have two possibilities: either d=0 or d=1. Let d=0, so the parameters of the problem are given by $I_{2;0}=a_0a_1+b_0+b_1$, $J_{2;0}=-b_0b_1$, $w_{2;0}=\frac{a_0a_1+b_0+b_1}{2\sqrt{b_0b_1}}$, $x_2=a_0x_1+b_0x_0$, and $x_4=(a_0^2a_1+a_0b_1+a_0b_0)x_1+(a_0b_0a_1+b_0^2)x_0$. Hence, Theorem 1.3 gives the following result.

Corollary 3.2 The solution x_{2n} for Recurrence 6 is given by

$$\sqrt{b_0 b_1}^{n-2} \left[\sqrt{b_0 b_1} (a_0 x_1 + b_0 x_0) U_{n-1} \left(\frac{a_0 a_1 + b_0 + b_1}{2 \sqrt{b_0 b_1}} \right) - b_0 b_1 x_0 U_{n-2} \left(\frac{a_0 a_1 + b_0 + b_1}{2 \sqrt{b_0 b_1}} \right) \right],$$

3 APPLICATIONS 11

where U_m is the mth Chebyshev polynomial.

Example 3.3 If $x_0 = 0$, $x_1 = 1$, $a_0 = x$, $a_1 = xy$, and $b_0 = b_1 = 1$, then the explicit expression to x_{2n} for the Recurrence 6 is given by $xU_{n-1}\left(1 + \frac{1}{2}x^2y\right)$. Hence, by the definition it is easy to see that in the case y = 1, we have that the Fibonacci polynomial $F_{2n}(x)$ is given by $xU_{n-1}\left(1 + \frac{1}{2}x^2\right)$.

If $x_0 = 2$, $x_1 = 1$, $a_0 = x$, $a_1 = xy$, and $b_0 = b_1 = 1$, then an explicit expression to x_{2n} for the Recurrence 6 is given by $(x + 2)U_{n-1}\left(1 + \frac{1}{2}x^2y\right) - 2U_{n-2}\left(1 + \frac{1}{2}x^2y\right)$. Hence, in the case y = 1 we have that the Lucas polynomial $L_{2n}(x)$ is given by $(x + 2)U_{n-1}\left(1 + \frac{1}{2}x^2\right) - 2U_{n-2}\left(1 + \frac{1}{2}x^2\right)$.

If $x_0 = 0$, $x_1 = 1$, $a_0 = 2x$, $a_1 = yx$, and $b_0 = b_1 = 1$, then an explicit expression to x_{2n} for the Recurrence 6 is given by $2xU_{n-1}(1+x^2y)$. Hence, in the case y = 2 we have that the Pell polynomial $P_{2n}(x)$ is given by $2xU_{n-1}(1+2x^2)$.

Another example for Theorem 1.3 is when q=3 and d=0. In this case the parameters of the problem are given by $I_{3;0}=a_0a_1a_2+b_0a_1+b_1a_2+a_0b_2$, $J_{3;0}=b_0b_1b_2$, $x_3=a_0x_2+b_0x_1$, and $x_6-I_{3;0}x_3=b_0b_1(x_2-a_2x_1)$. Therefore, we get the following result.

Corollary 3.4 The solution x_{2n} for Recurrence 2, when q = 3, is given by

$$\sqrt{-b_0b_1b_2}^{n-2} \left(\sqrt{-b_0b_1b_2}(a_0x_2+b_0x_1)U_{n-1}(w)+b_0b_1(x_2-a_2x_1)U_{n-2}(w)\right),\,$$

for all $n \geq 1$, where $w = \frac{a_0a_1a_2 + a_0b_2 + b_0a_1 + b_1a_2}{2\sqrt{-b_0b_1b_2}}$, and U_m is the mth Chebyshev polynomial.

REFERENCES 12

For example, if we are interested in solving the recurrence

$$\begin{cases} x_{3n} = x_{3n-1} + x_{3n-2} \\ x_{3n+1} = x_{3n} + x_{3n-1} \\ x_{3n+2} = yx_{3n+1} + x_{3n}, \end{cases}$$

with $x_0 = 0$ and $x_1 = x_2 = 1$, then by the above corollary we get that the solution x_{3n} for this recurrence is given by

$$2i^{n-1}U_{n-1}(-i(1+y)) + i^{n-2}(1-y)U_{n-2}(-i(1+y)),$$

where $i^2 = -1$. In particular, if y = 1 then we have that the (3n)th Fibonacci number, F_{3n} , is given by $2i^{n-1}U_{n-1}(-2i)$.

Acknowledgment. The authors would like to thank the anonymous referee for careful reading of the manuscript.

References

- G.H. Hardy and E.M. Wright, An introduction to the Theory of Numbers,
 4th ed. London, Oxford University Press, 1962.
- [2] P. Haukkanen, A note on Horadam's sequence, The Fibonacci Quarterly 40:4(2002) 358–361.

REFERENCES 13

[3] A.F. Horadam, Generalization of a result of Morgado, *Portugaliae Math.* **44** (1987) 131–136.

- [4] A.F. Horadam and J.M. Mahon, Pell and Pell-Locas Polynomials, *The Fi-bonacci Quarterly* **23:1** (1985) 7–20.
- [5] Th. Rivlin, Chebyshev polynomials. From approximation theory to algebra and number theory, John Wiley, New York, 1990.

2000 MATHEMATICS SUBJECT CLASSIFICATION: Primary 11B83, 42C05; Secondary 11K31