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1 Introduction and the main result

As usual, Fibonacci polynomials Fy,(z), Lucas polynomials L, (z), and Pell polynomials

P, (z) are defined by the second-order linear recurrence

lyyo = atpq1 + btna (1)
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with given a,b,ty,t; and n > 0. This sequence was introduced by Horadam [3] in
1965, and it generalizes many sequences (see [1, 4]). Examples of such sequences are
Fibonacci polynomials sequence (F,(z))n>0, Lucas polynomials sequence (L, (2))n>0,
and Pell polynomials sequence (P,(x))n>0, when one has a = z, b =t; = 1, t{; = 0;

a=t=x,b=1,1t =2;and a =2z, b =1, = 1, ty = 0; respectively.

Chebyshev polynomials of the second kind (in this paper just Chebyshev polynomials)

are defined by

sin(n + 1)
sin 0

Up(cos ) =
for n > 0. Evidently, U,(z) is a polynomial of degree n in x with integer coefficients.
For example, Up(z) = 1, U;(x) = 22, Us(x) = 422 — 1, and in general (see Recurrence 1
for a =2z, b= -1, ty = 1, and t; = 2z), U,12(x) = 22U,41(x) — U,(x). Chebyshev
polynomials were invented for the needs of approximation theory, but are also widely

used in various other branches of mathematics, including algebra, combinatorics, and

number theory (see [5]).

Lemma 1.1 Let (t,),>0 be any sequence that satisfies t, o = 2x - to11 — t, with given

to, t1, and n > 0. Then for alln > 0,

where Uy, is the mth Chebyshev polynomial of the second kind.
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Proof. A proof is straightforward using the relation U, 1o(x) = 22U, 41(x) — U, (z) and

induction on n. U

Let A be a tile of size 1 x 1 and B be a tile of size 1 x 2. We denote by £, the set of
all tilings of a 1 X n rectangle with tiles A and B. An element of £, can be written
as a sequence of the letters A and B. For example, £; = {A}, £, = {4A, B}, and
L3 = {AAA, AB, BA}. We denote by |a| the number of tiles A and B in a. For

example, |AAA| =3 and |AB| =2.

Proposition 1.2 The number of tilings of a 1 X n rectangle with tiles A and B 1is the

Fibonacci number F, 1, that is, |£,| = Fuy1.

Proof. 'The result is immediate for n < 1, so it is sufficient to show that the number
of such tilings satisfies the recurrence F;,, = F,_; + F,,_2. To do this, we observe that
there is a one-to-one correspondence between the tilings of a 1 x (n — i) rectangle and
the tilings of a 1 X n rectangle in which the rightmost tile has length 4, where : =1, 2.
Therefore, if we count tilings of a 1 xn rectangle according to the length of the rightmost
tile, we find the number of such tilings satisfies the recurrence F,,, = F,,, 1 + F},, 2, as

desired. O

Let a be any element of £,,, we define 8 by 3; = 1 if o; = A; otherwise 3; = 2, and we

write § = x(a). For example, x(AAABAB) = 111212.

Now, let us fix an integer s and a natural number ¢ such that ¢ > 1. Let ag, a1, .., a1,

bo, by, - .., by—1 be 2¢ constants and a = (ag, a1, ..., a,-1), b = (bo, b1, ...,b,—1). For any
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a € £,, we define v(n; s) = vap(n; 0, q,s) = H‘Zﬂl k(5;) where

O(s+B14--+8;) mod ¢ if 62 =1,

k(B;) =
b(s+ﬂ1+"'+/3¢) mod ¢» if Bz =2,
and B = x(a). For example, if ¢ =3, a, =nand b, =1 forn =0,1,2, s = 0, and

a = AABAB, then we have that

. _ _ _ 2 __
Ua,b(”a @, 4, 8) = @1 mod 302 mod 304 mod 395 mod 307 mod 3 = @102b1a2b1 = a1a; = 4.

We will be interestes in the sum of all v, »(n; @, g, s) over all @ € £,,, which is denoted by
V(n;s) = Vap(n; g, s), that is, V(n;s) = 37 co van(n;a,q,s). For example, V(1;s) =
(s+1) mod ¢ A0 V(25 8) = a(541) mod ¢%(s+2) mod ¢ T 0(s+2) mod - We extend the definition
of V(n;s) as V(0;s) = 1 and V(n;s) = 0 for n < 0. We remark that V(n;q, s) can
be given by a combinatorial interpretation as follows: V' (n; ¢, s) counts the number of
ways to tile a boards of length n, with cells numbered s+ 1 through s+n, using colored
tiles of size 1 x 1 and tiles of size 1 X 2. For a tile of size 1 X 1 on cell 4, we have a; nod 4

color choices; and for a tile of size 1 x 2 on cells : — 1 and ¢, we have b, 1,04, choices.

The main result of this paper can be formulated as follows.

Theorem 1.3 Let (z,)n>0 be any sequence (z, = xnq4(a, b)) that satisfies

Tgntd = O * Tantd—1 + bd - Tanyd—2, (2)
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foralln>1,0<d<qg—1, with given g, x1,...,24 1. Then forn > 1, T4,1q 15 given

by

n—2
vV —Jgd <xq+d Y —J4:aUn 1(Wga) + (T2g1d — LgyaTqra) - Un72(wq;d)> ;

for alln > 1, where Uy, is the mth Chebyshev polynomial,

Tgpa = V(d+1;=1)zgq + bV (d; 0)z 40—

Togra = V(g+d+1;—1)xe-1 + bV (g + d;0)zy,

and

_ Iq;d
We;d = )
2y/—Jyd
Tyid = basry modg V(@ — 2d +1) + V(g d), (3)

Jgza = bat1) modq - (V(q —Ld+1)V(g—1;d) = V(g;d)V (g — 2;d + 1))-

The paper is organized as follows. In Section 2 we give a proof of Theorem 1.3, and in

Section 3 we give some applications for Theorem 1.3.

2 Proofs

Throughout this section, we assume that ¢ is a natural number (¢ > 1) and s is an inte-
ger. Also, let ag,ay,...,a,-1,b9,b1,...,b,-1 be 2¢q constants and a = (ag, a1, --.,a,-1),

b = (bg, b1, . ..,bs—1). We start from the following lemma.
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Lemma 2.1 Let ¢ be an integer such that £ > s+ 2. Then

V(l—5,5) =amodq VIl —5—1;5) +bymogq- V(€ —s—2;5).

Proof. To verify this lemma, we observe that there is a one-to-one correspondence
between the tilings of a 1 x (¢ — s — i) rectangle and the tilings of a 1 x (£ — s)
rectangle in which the rightmost tile has length i, where i = 1,2. Hence V(£ — s;5) =
Aymodg V(l—5—=158) +bymodq - V(€ — 5 —2,5), where the first term corresponds to

the case 1 = 1 and the second one to the case 7 = 2. O

Now, let us apply this lemma to find z4,44+m in terms of x4, 4 and Tgnig—1-

Proposition 2.2 Letq—1>d >0 and n > 1. Then for all m > 0,

Lon-+d+m = V(m; d) *Tgn+d + b(d+1) modgq * V(m -1 d+ 1) " Tyn+d—1-

Proof. Let us prove this proposition by induction on m. Since

Tgn+d+0 = 1. ZTgn+d+0 + b(d+1) modgq 0- Tantd—1,
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V(0;d) =1 and V(m;d) = 0 for m < 0, we have that the proposition holds for m = 0.

By Recurrence 2 we get
Tgn+d+1 = O(g41)mod ¢ * Len+d T bat1) mod ¢ * Tantd—1

=V(1;d) - Tgnia + bas1ymod g * V(0;d+1) - Zgniat,

therefore the proposition holds for m = 1. Now, we assume that the proposition holds

for 0,1,...,m — 1, and prove that it holds for m. By induction hypothesis we have
Tgn+drm—2 = V(M = 25d) - Tynd + bgi1ymod g - V(M — 3;d + 1) - Zgnya—1,
and
Tgntdrm-1 =V (M = 15d) - Tyna + bgi1ymod g - V(M — 25d + 1) - Zgnya—1,
hence, by Equation 2 we get

Tgn+d+m = O(d+m) mod ¢ ~ Lan+d+m—1 + b(d+m) mod ¢ * Lgn+m+d—2
= (a(d+m) mod g V(m—1;d) + b(d+m) mod g V(m — 2 d))mqn—l—d
+b(d+1) mod ¢ (a(d+m) mod g ° Vim—2d+1)+ b(d+m) mod ¢ ° V(m—3;d+ 1)) Lon+d—1-

Using Lemma 2.1 for { =m+d, s =d and for f = m+d, s = d+ 1, we get the desired

result. O



2 PROOFS 8

Now we introduce a recurrence relation that plays the crucial role in the proof of the

Main Theorem.

Proposition 2.3 Let q—1>d > 0. Then for alln > 2,

l'q(”+1)+d = (b(d—l—l) modq . V(q — 2, d + 1) + V(q, d))l‘qn—l—d

+0(d41) modq - (V(q - Ld+1)V(g—1;d) = V(g;d)V(g — 2;d + 1))xq<n1)+d-
Proof. Using Proposition 2.2 for m = ¢ — 1 we get

Tg(n+1)+d—1 — B(at1)mod g * V(g—=21d+ 1) 2gnia—1 = V(¢ — 1;d) - Tgna, (4)

and for m = ¢ we have

Tant1)+a = V(¢;d) * Tgn+a + b(a+1)mod ¢ - Vig—Ld+1) zgnig-1- (5)
Hence, Equation 4 yields

Lg(n+1)+d — b(d+1) modgq ° V((] —2;d+ 1) " Tgntd =
=V(g;d) (an-l—d — b1y mod g - Vig—2;d+1)- an-i-d)

+b(q+1) modgq Vig—1;d+1) <$qn+d—1 - b(d+1) modgq ' Vig—2;d+1)- xq(n—l)-l-d—l)a

and by using Equation 4 we get the desired result. O
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Proof of Theorem 1.3. Recall the definitions in 3. Now we are ready to prove the

main result of this paper. Using Proposition 2.3 we have for n > 2,

Ton+1)+d = Lga - Tanta + Jgsa - Ton—1)+a-

If we define ¢, = 24,44 for n > 1, then we get

lnt1 = Iq;d by + id*tn-1,

therefore, by defining (—.J,.4)"/*',, = t,, we have for n > 2,

!

! !
i1 = 2Wggt'n — ).

Let us find expressions for #'y and t';. By the recurrence for ¢, we can define ¢, as

ty = Ip.qt1 + Jgato, which means that t'y = tp = Jid(acgﬁd — I,.4%,+q)- By definitions,
q;

t = ﬁ. Using Proposition 2.2, we get x4 = V(d + 1;—1)z,—1 + bV (d; 0)z4—2

and zogiq = V(¢+d+1;—-1)x,—1 + bV (¢ + d; 0)x,—o. Hence, using Lemma 1.1 we get

the desired result.

3 Applications

There is a connection between the sequences which are defined by Recurrence 2, and

the sequences which are define by Recurrence 1. Indeed, from Theorem 1.3 we get the
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following result.

Corollary 3.1 For given zy and x_1, and the recurrence T, o = agTp+1 + boZTy, an

explicit solution for this recurrence is given by

n—2 Qo Qo
n=1/—b \/—b bor_1)Up—1 | ——= boroUpn—2 | ——== 1|,
T 0 o(aozo + boz_1) 1(2\/_—1)0) + 000 2(2\/_—%)]

where Uy, is the mth Chebyshev polynomial.

Proof. Using Theorem 1.3 for ¢ = 1 with the parameters d = 0, I,y = ao, Ji;,0 = by,
T1 = aogZo + boT_1, T2 = (a§ + bo)To + agboz_1, and wy,p = s, We get the explicit

solution for the recurrence x,9 = agx, 1 + boTy, as requested. O

The first interesting case is ¢ = 2. Then Recurrence 2 gives

Ton = aoTan -1+ boTan 2
(6)
Tont1 = G1Z2p + b1Tan 1,
with given zy and x;. In this case we have two possibilities: either d = 0 or d = 1. Let
d = 0, so the parameters of the problem are given by o, = aga; + by +0b1, Jo,0 = —boby,
a0a1+bo+b1

’wg;() = W, To = Qg1 + b()x(), and Ty = (a%al -+ a0b1 + aobo)ﬂ?l -+ (a0b0a1 + bg)l‘o

Hence, Theorem 1.3 gives the following result.

Corollary 3.2 The solution o, for Recurrence 6 is given by

" bo + b by + b
o N e~ R e
01 001
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where Uy, is the mth Chebyshev polynomial.

Example 3.3 Ifzg =0, x1 =1, ayg = x, a1 = zy, and by = by = 1, then the explicit
erpression to xa, for the Recurrence 6 is given by xU,_1 (1 + %x2y). Hence, by the
definition it is easy to see that in the case y = 1, we have that the Fibonacci polynomial
Foy () is given by xUn—q (1 + 327).

If tg =2, 21 =1, ag = x, ay = zy, and by = by = 1, then an explicit expression
to Ton for the Recurrence 6 is given by (z + 2)Un—1 (1 + 222y) — 2U,_, (1 + 32%y).
Hence, in the case y = 1 we have that the Lucas polynomial Lo, () is given by (x +
2)Up—1 (1 + 322) — 2U, 5 (1 + 327).

If xg =0, z1 =1, ay = 2z, a1 = yx, and by = by = 1, then an explicit expression to
Ton for the Recurrence 6 is given by 2zU, 1(1 + x?y). Hence, in the case y = 2 we

have that the Pell polynomial Py, (x) is given by 2zU, (1 + 2x?).

Another example for Theorem 1.3 is when ¢ = 3 and d = 0. In this case the parameters
of the problem are given by 13;0 = apa10y + b()(ll + b1a2 + aobg, Jg;o = boblbg, I3 =

aoxs + bor1, and xe — I30x3 = bobi (x9 — asz1). Therefore, we get the following result.

Corollary 3.4 The solution x5, for Recurrence 2, when q = 3, is given by

n—2
vV —boblbg (\/ —boblbg(ao.TQ + boxl)Un_l(w) + bobl (.TQ — CLQ.’El)Un_Q(’w)) R

foralln > 1, wherew = “0“1“2;$‘f2$?%:1+b1“2 , and U,, is the mth Chebyshev polynomial.
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For example, if we are interested in solving the recurrence

T3n = T3p—1 + T3n—2
\ Zani1 = Tan + Tan_1
\ T3nt+2 = YT3n41 + T3n,

with £y = 0 and z; = 9 = 1, then by the above corollary we get that the solution x3,

for this recurrence is given by

2" U1 (—i(1 4 y)) + 4 (1 — y)Un—a(—i(1 + v)),

where 72 = —1. In particular, if y = 1 then we have that the (3n)th Fibonacci number,

F3,, is given by 2"~ 'U,_(—21).
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