[o] GLIM 4, update 8 for Sun SPARCstation / Solaris on 17 Nov 2009 at 14:11:06 [o] (copyright) 1992 Royal Statistical Society, London [o] In all 3 replications (occasions), the 8 treatment combinations are assigned to 2 blocks as follows: Block 1: (1) ab ac bc (ABC is confounded) Block 2: a b c abc [i] ? $uni 24$ [i] ? $dat anesth$ [i] ? $rea [i] $REA? 9 8.5 7.5 12 9.5 10.5 8.5 18.5 [i] $REA? 9.5 7.5 7.7 11.2 10.5 12.3 8.6 20.1 [i] $REA? 10 8.2 6.9 12.3 11.6 11.1 8.6 18.7 [i] ? $ca a=%gl(2,1):b=%gl(2,2):c=%gl(2,4):repl=%gl(3,8)$ [i] ? $fac a 2 b 2 c 2 repl 3$ [i] ? $data block$ [i] ? $read [i] $REA? 1 2 2 1 2 1 1 2 [i] $REA? 1 2 2 1 2 1 1 2 [i] $REA? 1 2 2 1 2 1 1 2 [i] ? $fac block 2$ [i] ? $yvar anesth$ [i] ? $fit$ [o] deviance = 296.07 [o] residual df = 23 [o] [i] ? $fit+repl$ [o] deviance = 295.11 (change = -0.9633) [o] residual df = 21 (change = -2 ) [o] [i] ? $fit+block$ [o] deviance = 289.50 (change = -5.607) [o] residual df = 20 (change = -1 ) [o] [i] ? $fit+block.repl$ [o] deviance = 289.46 (change = -0.04333) [o] residual df = 18 (change = -2 ) [o] [i] ? $fit+a$ [o] deviance = 212.42 (change = -77.04) [o] residual df = 17 (change = -1 ) [o] [i] ? $fit+b$ [o] deviance = 191.51 (change = -20.91) [o] residual df = 16 (change = -1 ) [o] [i] ? $fit+c$ [o] deviance = 130.71 (change = -60.80) [o] residual df = 15 (change = -1 ) [o] [i] ? $fit+a.b$ [o] deviance = 38.668 (change = -92.04) [o] residual df = 14 (change = -1 ) [o] [i] ? $fit+a.c$ [o] deviance = 13.042 (change = -25.63) [o] residual df = 13 (change = -1 ) [o] [i] ? $fit+b.c$ [o] deviance = 6.4267 (change = -6.615) [o] residual df = 12 (change = -1 ) [o] [i] ? $fit+a.b.c$ [o] deviance = 6.4267 (change = 0.) [o] residual df = 12 (change = 0 ) [o] [i] ? $disp e m$ [o] estimate s.e. parameter [o] 1 9.200 0.5175 1 [o] 2 0.4000 0.5175 REPL(2) [o] 3 0.5000 0.5175 REPL(3) [o] 4 1.000 0.5175 BLOCK(2) [o] 5 -2.400 0.5175 A(2) [o] 6 -3.100 0.5175 B(2) [o] 7 0.06667 0.5175 C(2) [o] 8 0.05000 0.7318 REPL(2).BLOCK(2) [o] 9 -0.1500 0.7318 REPL(3).BLOCK(2) [o] 10 7.833 0.5975 A(2).B(2) [o] 11 4.133 0.5975 A(2).C(2) [o] 12 2.100 0.5975 B(2).C(2) [o] 13 0.000 aliased A(2).B(2).C(2) [o] scale parameter 0.5356 [o] [o] Current model: [o] [o] number of observations in model is 24 [o] [o] y-variate ANESTH [o] weight * [o] offset * [o] [o] [o] probability distribution is NORMAL [o] link function is IDENTITY [o] scale parameter is to be estimated by the mean deviance [o] [o] linear model: [o] terms: 1+REPL+BLOCK+A+B+C+REPL.BLOCK+A.B+A.C+B.C+A.B.C ANOVA Source df SS MS F Replication 2 0.9633 Blocks(ABC) 1 5.607 ReplxBlock 2 0.04333 A 1 77.04 77.04 143.8 B 1 20.91 20.91 39.040 C 1 60.80 60.80 113.516 AB 1 92.04 92.04 171.844 AC 1 25.63 25.63 47.853 BC 1 6.615 6.615 12.351 Error 12 6.4267 0.5356 Total 23 296.07 ABC is untestable, and the f-test value are all significant. To overcome this problem use different defining contracts for the diferent replications. for example use AC for the 2nd occasion, and BC for the 3rd. The 8 treatment combinations are assigned to 2 blocks as follows: Repl. 1: Block 1: (1) ab ac bc (ABC is confounded) Block 2: a b c abc Repl. 2: Block 1: (1) b ac abc (AC is confounded) Block 2: a ab c bc Repl. 3: Block 1: (1) a c ac (BC is confounded) Block 2: b ab bc abc The revised ANOVA table is: Source df SS MS F Replication 2 Blocks(ABC) 1 ReplxBlock 2 A 1 B 1 C 1 AB 1 AC* 1 BC* 1 ABC* 1 Error 11 Total 23 (* From replications which are not confounded)